Previous in Relation and Functions Next in Relation and Functions | ||
Question Number 115997 by bemath last updated on 30/Sep/20 | ||
Answered by bobhans last updated on 30/Sep/20 | ||
$$\left(\mathrm{1}\right){f}\left(\frac{\mathrm{1}}{{x}}\right)+{f}\left(\mathrm{1}−{x}\right)\:=\:{x}\rightarrow{f}\left(\mathrm{1}−{x}\right)={x}−{f}\left(\frac{\mathrm{1}}{{x}}\right) \\ $$$${replace}\:\mathrm{1}−{x}\:{by}\:{x} \\ $$$$\left(\mathrm{2}\right)\:{f}\left(\frac{\mathrm{1}}{\mathrm{1}−{x}}\right)\:+\:{f}\left({x}\right)\:=\:\mathrm{1}−{x} \\ $$$${replace}\:\frac{\mathrm{1}}{{x}}\:{by}\:\mathrm{1}−{x}\: \\ $$$$\left(\mathrm{3}\right)\:{f}\left(\mathrm{1}−{x}\right)+{f}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}−{x}}\right)=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}−{x}} \\ $$$$\:{f}\left(\mathrm{1}−{x}\right)+{f}\left(\frac{{x}}{{x}−\mathrm{1}}\right)=\frac{{x}}{{x}−\mathrm{1}} \\ $$$$\Leftrightarrow−{f}\left(\frac{\mathrm{1}}{{x}}\right)+{f}\left(\frac{{x}}{{x}−\mathrm{1}}\right)=\frac{{x}}{{x}−\mathrm{1}}−\frac{{x}^{\mathrm{2}} −{x}}{{x}−\mathrm{1}} \\ $$$$\Leftrightarrow\:{f}\left(\frac{{x}}{{x}−\mathrm{1}}\right)−{f}\left(\frac{\mathrm{1}}{{x}}\right)=\frac{−{x}^{\mathrm{2}} +\mathrm{2}{x}}{{x}−\mathrm{1}} \\ $$$${continue} \\ $$ | ||