Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 115237 by nisaketto last updated on 24/Sep/20

Answered by nimnim last updated on 24/Sep/20

A=area of regular hexagon−area of circle      =((3(√3))/2)a^2 −πr^2 =(((3×1.732)/2)×6×6)−(((22)/7)×2×2)      =93.528−0.785=92.77cm^2     the question said radius is 2cm while the    figure represent radius is 4.2cm  OR ( ((3(√3))/2)×6×6)−(((22)/7)×4.2×4.2)      =93.528−55.55      =38.088≈38.09 cm^2

$$\mathrm{A}=\mathrm{area}\:\mathrm{of}\:\mathrm{regular}\:\mathrm{hexagon}−\mathrm{area}\:\mathrm{of}\:\mathrm{circle} \\ $$$$\:\:\:\:=\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{a}^{\mathrm{2}} −\pi\mathrm{r}^{\mathrm{2}} =\left(\frac{\mathrm{3}×\mathrm{1}.\mathrm{732}}{\mathrm{2}}×\mathrm{6}×\mathrm{6}\right)−\left(\frac{\mathrm{22}}{\mathrm{7}}×\mathrm{2}×\mathrm{2}\right) \\ $$$$\:\:\:\:=\mathrm{93}.\mathrm{528}−\mathrm{0}.\mathrm{785}=\mathrm{92}.\mathrm{77cm}^{\mathrm{2}} \\ $$$$\:\:{the}\:{question}\:{said}\:{radius}\:{is}\:\mathrm{2}{cm}\:{while}\:{the} \\ $$$$\:\:{figure}\:{represent}\:{radius}\:{is}\:\mathrm{4}.\mathrm{2}{cm} \\ $$$${OR}\:\left(\:\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{2}}×\mathrm{6}×\mathrm{6}\right)−\left(\frac{\mathrm{22}}{\mathrm{7}}×\mathrm{4}.\mathrm{2}×\mathrm{4}.\mathrm{2}\right) \\ $$$$\:\:\:\:=\mathrm{93}.\mathrm{528}−\mathrm{55}.\mathrm{55} \\ $$$$\:\:\:\:=\mathrm{38}.\mathrm{088}\approx\mathrm{38}.\mathrm{09}\:\mathrm{cm}^{\mathrm{2}} \\ $$

Answered by EvoneAkashi last updated on 24/Sep/20

The area of the hexagon is ((3(√3))/2)×6^2 =54(√3)cm^2 .  The area of the circle is π×2^2 =4πcm^2 ,  So the area finded is (54(√3)−4π)cm^2 .

$${The}\:{area}\:{of}\:{the}\:{hexagon}\:{is}\:\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{2}}×\mathrm{6}^{\mathrm{2}} =\mathrm{54}\sqrt{\mathrm{3}}{cm}^{\mathrm{2}} . \\ $$$${The}\:{area}\:{of}\:{the}\:{circle}\:{is}\:\pi×\mathrm{2}^{\mathrm{2}} =\mathrm{4}\pi{cm}^{\mathrm{2}} , \\ $$$${So}\:{the}\:{area}\:{finded}\:{is}\:\left(\mathrm{54}\sqrt{\mathrm{3}}−\mathrm{4}\pi\right){cm}^{\mathrm{2}} . \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com