Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 115136 by Algoritm last updated on 23/Sep/20

Answered by Olaf last updated on 23/Sep/20

sin2θ = 2sinθcosθ  cosθ = (1/2).((sin2θ)/(sinθ))  θ = ((kπ)/(2n+1)), cos(((kπ)/(2n+1))) = (1/2).((sin(((2kπ)/(2n+1))))/(sin(((kπ)/(2n+1)))))  Π_(k=1) ^n cos(((kπ)/(2n+1))) = (1/2^n )Π_(k=1) ^n ((sin(((2kπ)/(2n+1))))/(sin(((kπ)/(2n+1)))))  Π_(k=1) ^n cos(((kπ)/(2n+1))) = (1/2^n ).((sin(((2π)/(2n+1))))/(sin((π/(2n+1)))))×((sin(((4π)/(2n+1))))/(sin(((2π)/(2n+1)))))...×((sin(((2πn)/(2n+1))))/(sin(((πn)/(2n+1)))))  Π_(k=1) ^n cos(((kπ)/(2n+1))) = (1/2^n ).((sin(((2πn)/(2n+1))))/(sin((π/(2n+1)))))  sin(((2πn)/(2n+1))) = sin(π−(π/(2n+1))) = sin((π/(2n+1)))  ⇒ Π_(k=1) ^n cos(((kπ)/(2n+1))) = (1/2^n )

$$\mathrm{sin2}\theta\:=\:\mathrm{2sin}\theta\mathrm{cos}\theta \\ $$$$\mathrm{cos}\theta\:=\:\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{sin2}\theta}{\mathrm{sin}\theta} \\ $$$$\theta\:=\:\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}},\:\mathrm{cos}\left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{sin}\left(\frac{\mathrm{2}{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)}{\mathrm{sin}\left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\mathrm{cos}\left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\frac{\mathrm{sin}\left(\frac{\mathrm{2}{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)}{\mathrm{sin}\left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\mathrm{cos}\left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}^{{n}} }.\frac{\mathrm{sin}\left(\frac{\mathrm{2}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)}{\mathrm{sin}\left(\frac{\pi}{\mathrm{2}{n}+\mathrm{1}}\right)}×\frac{\mathrm{sin}\left(\frac{\mathrm{4}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)}{\mathrm{sin}\left(\frac{\mathrm{2}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)}...×\frac{\mathrm{sin}\left(\frac{\mathrm{2}\pi{n}}{\mathrm{2}{n}+\mathrm{1}}\right)}{\mathrm{sin}\left(\frac{\pi{n}}{\mathrm{2}{n}+\mathrm{1}}\right)} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\mathrm{cos}\left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}^{{n}} }.\frac{\mathrm{sin}\left(\frac{\mathrm{2}\pi{n}}{\mathrm{2}{n}+\mathrm{1}}\right)}{\mathrm{sin}\left(\frac{\pi}{\mathrm{2}{n}+\mathrm{1}}\right)} \\ $$$$\mathrm{sin}\left(\frac{\mathrm{2}\pi{n}}{\mathrm{2}{n}+\mathrm{1}}\right)\:=\:\mathrm{sin}\left(\pi−\frac{\pi}{\mathrm{2}{n}+\mathrm{1}}\right)\:=\:\mathrm{sin}\left(\frac{\pi}{\mathrm{2}{n}+\mathrm{1}}\right) \\ $$$$\Rightarrow\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\mathrm{cos}\left(\frac{{k}\pi}{\mathrm{2}{n}+\mathrm{1}}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}^{{n}} } \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com