Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 115072 by A8;15: last updated on 23/Sep/20

Commented by A8;15: last updated on 23/Sep/20

please help with the solution

Answered by 1549442205PVT last updated on 23/Sep/20

Opening brackets we get  S=2020−(2019−(2018−(2017−  (2016−(....(2−1)...)  =2020−2019+2018−2017+...  +2−1=(2020−2019)+(2018−2017)+  +...+(2−1)=1+1+...+1=1010  (Since all 2020 terms⇒1010 sums)

$$\mathrm{Opening}\:\mathrm{brackets}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{S}=\mathrm{2020}−\left(\mathrm{2019}−\left(\mathrm{2018}−\left(\mathrm{2017}−\right.\right.\right. \\ $$$$\left(\mathrm{2016}−\left(....\left(\mathrm{2}−\mathrm{1}\right)...\right)\right. \\ $$$$=\mathrm{2020}−\mathrm{2019}+\mathrm{2018}−\mathrm{2017}+... \\ $$$$+\mathrm{2}−\mathrm{1}=\left(\mathrm{2020}−\mathrm{2019}\right)+\left(\mathrm{2018}−\mathrm{2017}\right)+ \\ $$$$+...+\left(\mathrm{2}−\mathrm{1}\right)=\mathrm{1}+\mathrm{1}+...+\mathrm{1}=\mathrm{1010} \\ $$$$\left(\mathrm{Since}\:\mathrm{all}\:\mathrm{2020}\:\mathrm{terms}\Rightarrow\mathrm{1010}\:\mathrm{sums}\right) \\ $$

Commented by A8;15: last updated on 23/Sep/20

thank you sir

Answered by JDamian last updated on 23/Sep/20

d) 1010

$$\left.{d}\right)\:\mathrm{1010} \\ $$

Commented by A8;15: last updated on 23/Sep/20

how ? I need a solution

Terms of Service

Privacy Policy

Contact: info@tinkutara.com