Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 114945 by bemath last updated on 22/Sep/20

Answered by bobhans last updated on 22/Sep/20

f(x,y) = x^3 +y^3 −3x−12y+20  f_x =3x^2 −3=0 → { ((x=1)),((x=−1)) :}  f_y =3y^2 −12=0→ { ((y=2)),((y=−2)) :}  f_(xx) = 6x ; f_(yy) = 6y ; f_(xy) =f_(yx) =0  the function possible extremum at   (1,2); (1,−2);(−1,2) and (−1,−2)  next D is evaluated at this four points  D=f_(xx) .f_(yy) −(f_(xy) )^2 =36xy  at  { (((1,2) →D>0 ∧f_(xx) >0 , local min at(1,2))),(((−1,2)→D<0 has no extremum at(−1,2))) :}  at { (((−1,−2)⇒D>0 ∧f_(xx) <0 ,local max at (−1,−2))),(((1,−2)→D<0 has no extremum at (1,−2))) :}  min value f(1,2)=1^3 +2^3 −3.1−12.2+20                                = 29−27=2  max value f(−1,−2)=−1−8+3+24+20                                           = −9+47=38

$${f}\left({x},{y}\right)\:=\:{x}^{\mathrm{3}} +{y}^{\mathrm{3}} −\mathrm{3}{x}−\mathrm{12}{y}+\mathrm{20} \\ $$$${f}_{{x}} =\mathrm{3}{x}^{\mathrm{2}} −\mathrm{3}=\mathrm{0}\:\rightarrow\begin{cases}{{x}=\mathrm{1}}\\{{x}=−\mathrm{1}}\end{cases} \\ $$$${f}_{{y}} =\mathrm{3}{y}^{\mathrm{2}} −\mathrm{12}=\mathrm{0}\rightarrow\begin{cases}{{y}=\mathrm{2}}\\{{y}=−\mathrm{2}}\end{cases} \\ $$$${f}_{{xx}} =\:\mathrm{6}{x}\:;\:{f}_{{yy}} =\:\mathrm{6}{y}\:;\:{f}_{{xy}} ={f}_{{yx}} =\mathrm{0} \\ $$$${the}\:{function}\:{possible}\:{extremum}\:{at}\: \\ $$$$\left(\mathrm{1},\mathrm{2}\right);\:\left(\mathrm{1},−\mathrm{2}\right);\left(−\mathrm{1},\mathrm{2}\right)\:{and}\:\left(−\mathrm{1},−\mathrm{2}\right) \\ $$$${next}\:{D}\:{is}\:{evaluated}\:{at}\:{this}\:{four}\:{points} \\ $$$${D}={f}_{{xx}} .{f}_{{yy}} −\left({f}_{{xy}} \right)^{\mathrm{2}} =\mathrm{36}{xy} \\ $$$${at}\:\begin{cases}{\left(\mathrm{1},\mathrm{2}\right)\:\rightarrow{D}>\mathrm{0}\:\wedge{f}_{{xx}} >\mathrm{0}\:,\:{local}\:{min}\:{at}\left(\mathrm{1},\mathrm{2}\right)}\\{\left(−\mathrm{1},\mathrm{2}\right)\rightarrow{D}<\mathrm{0}\:{has}\:{no}\:{extremum}\:{at}\left(−\mathrm{1},\mathrm{2}\right)}\end{cases} \\ $$$${at\begin{cases}{\left(−\mathrm{1},−\mathrm{2}\right)\Rightarrow{D}>\mathrm{0}\:\wedge{f}_{{xx}} <\mathrm{0}\:,{local}\:{max}\:{at}\:\left(−\mathrm{1},−\mathrm{2}\right)}\\{\left(\mathrm{1},−\mathrm{2}\right)\rightarrow{D}<\mathrm{0}\:{has}\:{no}\:{extremum}\:{at}\:\left(\mathrm{1},−\mathrm{2}\right)}\end{cases}} \\ $$$${min}\:{value}\:{f}\left(\mathrm{1},\mathrm{2}\right)=\mathrm{1}^{\mathrm{3}} +\mathrm{2}^{\mathrm{3}} −\mathrm{3}.\mathrm{1}−\mathrm{12}.\mathrm{2}+\mathrm{20} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{29}−\mathrm{27}=\mathrm{2} \\ $$$${max}\:{value}\:{f}\left(−\mathrm{1},−\mathrm{2}\right)=−\mathrm{1}−\mathrm{8}+\mathrm{3}+\mathrm{24}+\mathrm{20} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:−\mathrm{9}+\mathrm{47}=\mathrm{38} \\ $$

Commented by bemath last updated on 22/Sep/20

santuyy...sir. gave kudos

$${santuyy}...{sir}.\:{gave}\:{kudos} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com