Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 114806 by Algoritm last updated on 21/Sep/20

Answered by MJS_new last updated on 21/Sep/20

a−8=((√(24))/( (√a)))  let a=t^2 ∧t>0  t^2 −8=((2(√6))/t)  t^3 −8t−2(√6)=0  as always, try factors of the constant  ⇒ t_1 =−(√6)  (t+(√6))(t^2 −(√6)t−2)=0  ⇒ t_(2, 3) =((√6)/2)±((√(14))/2)  but t>0 ⇒ t=((√6)/2)+((√(14))/2)  ⇒ a=5+(√(21))  ⇒ a−(√(6a))=a−(√6)t=2

$${a}−\mathrm{8}=\frac{\sqrt{\mathrm{24}}}{\:\sqrt{{a}}} \\ $$$$\mathrm{let}\:{a}={t}^{\mathrm{2}} \wedge{t}>\mathrm{0} \\ $$$${t}^{\mathrm{2}} −\mathrm{8}=\frac{\mathrm{2}\sqrt{\mathrm{6}}}{{t}} \\ $$$${t}^{\mathrm{3}} −\mathrm{8}{t}−\mathrm{2}\sqrt{\mathrm{6}}=\mathrm{0} \\ $$$$\mathrm{as}\:\mathrm{always},\:\mathrm{try}\:\mathrm{factors}\:\mathrm{of}\:\mathrm{the}\:\mathrm{constant} \\ $$$$\Rightarrow\:{t}_{\mathrm{1}} =−\sqrt{\mathrm{6}} \\ $$$$\left({t}+\sqrt{\mathrm{6}}\right)\left({t}^{\mathrm{2}} −\sqrt{\mathrm{6}}{t}−\mathrm{2}\right)=\mathrm{0} \\ $$$$\Rightarrow\:{t}_{\mathrm{2},\:\mathrm{3}} =\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{14}}}{\mathrm{2}} \\ $$$$\mathrm{but}\:{t}>\mathrm{0}\:\Rightarrow\:{t}=\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}+\frac{\sqrt{\mathrm{14}}}{\mathrm{2}} \\ $$$$\Rightarrow\:{a}=\mathrm{5}+\sqrt{\mathrm{21}} \\ $$$$\Rightarrow\:{a}−\sqrt{\mathrm{6}{a}}={a}−\sqrt{\mathrm{6}}{t}=\mathrm{2} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com