Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 114654 by mohammad17 last updated on 20/Sep/20

Commented by mohammad17 last updated on 20/Sep/20

help me sir

$${help}\:{me}\:{sir} \\ $$

Commented by mohammad17 last updated on 20/Sep/20

thank hou sir can you help me in other question

$${thank}\:{hou}\:{sir}\:{can}\:{you}\:{help}\:{me}\:{in}\:{other}\:{question} \\ $$

Answered by bobhans last updated on 20/Sep/20

[2] x=acos^3  θ ⇒(dx/dθ) = −3acos^2 θ sin θ          y=asin^3 θ⇒(dy/dθ) = 3asin^2 θ cos θ         (dy/dx) = (dy/dθ) × (dθ/dx) = ((3asin^2 θ cos θ)/(−3acos^2 θ sin θ))         (dy/dx) = −((sin θ)/(cos θ)) = −tan θ       (√(1+((dy/dx))^2 )) = (√(1+tan^2 θ)) = sec θ

$$\left[\mathrm{2}\right]\:{x}={a}\mathrm{cos}^{\mathrm{3}} \:\theta\:\Rightarrow\frac{{dx}}{{d}\theta}\:=\:−\mathrm{3}{a}\mathrm{cos}\:^{\mathrm{2}} \theta\:\mathrm{sin}\:\theta\: \\ $$$$\:\:\:\:\:\:\:{y}={a}\mathrm{sin}\:^{\mathrm{3}} \theta\Rightarrow\frac{{dy}}{{d}\theta}\:=\:\mathrm{3}{a}\mathrm{sin}\:^{\mathrm{2}} \theta\:\mathrm{cos}\:\theta \\ $$$$\:\:\:\:\:\:\:\frac{{dy}}{{dx}}\:=\:\frac{{dy}}{{d}\theta}\:×\:\frac{{d}\theta}{{dx}}\:=\:\frac{\mathrm{3}{a}\mathrm{sin}\:^{\mathrm{2}} \theta\:\mathrm{cos}\:\theta}{−\mathrm{3}{a}\mathrm{cos}\:^{\mathrm{2}} \theta\:\mathrm{sin}\:\theta} \\ $$$$\:\:\:\:\:\:\:\frac{{dy}}{{dx}}\:=\:−\frac{\mathrm{sin}\:\theta}{\mathrm{cos}\:\theta}\:=\:−\mathrm{tan}\:\theta \\ $$$$\:\:\:\:\:\sqrt{\mathrm{1}+\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} }\:=\:\sqrt{\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \theta}\:=\:\mathrm{sec}\:\theta \\ $$

Answered by Dwaipayan Shikari last updated on 20/Sep/20

x^y =y^x   ylogx=xlogy  (y/x)+logx(dy/dx)=logy+(x/y).(dy/dx)  (dy/dx)(logx−(x/y))=logy−(y/x)  (dy/dx)=((logy−(y/x))/(logx−(x/y)))

$${x}^{{y}} ={y}^{{x}} \\ $$$${ylogx}={xlogy} \\ $$$$\frac{{y}}{{x}}+{logx}\frac{{dy}}{{dx}}={logy}+\frac{{x}}{{y}}.\frac{{dy}}{{dx}} \\ $$$$\frac{{dy}}{{dx}}\left({logx}−\frac{{x}}{{y}}\right)={logy}−\frac{{y}}{{x}} \\ $$$$\frac{{dy}}{{dx}}=\frac{{logy}−\frac{{y}}{{x}}}{{logx}−\frac{{x}}{{y}}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com