Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 114480 by mohammad17 last updated on 19/Sep/20

Commented by mohammad17 last updated on 19/Sep/20

help me sir

$${help}\:{me}\:{sir} \\ $$

Answered by john santu last updated on 19/Sep/20

(4) 2y+x = 2(−1)+(2)          2y+x = 0 ; y = −(1/2)x  (5) 8x−y=8(7)−(1)          8x−y = 55 ; y = 8x−55

$$\left(\mathrm{4}\right)\:\mathrm{2}{y}+{x}\:=\:\mathrm{2}\left(−\mathrm{1}\right)+\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:\:\mathrm{2}{y}+{x}\:=\:\mathrm{0}\:;\:{y}\:=\:−\frac{\mathrm{1}}{\mathrm{2}}{x} \\ $$$$\left(\mathrm{5}\right)\:\mathrm{8}{x}−{y}=\mathrm{8}\left(\mathrm{7}\right)−\left(\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\mathrm{8}{x}−{y}\:=\:\mathrm{55}\:;\:{y}\:=\:\mathrm{8}{x}−\mathrm{55} \\ $$

Commented by mohammad17 last updated on 19/Sep/20

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Answered by Dwaipayan Shikari last updated on 19/Sep/20

2x−y=1  y=2x+1  m=2  m_0 =−(1/m)=−(1/2)  y=−(1/2).x+C  −1=−1+C  C=0  y=−(1/2)x⇒2y+x=0

$$\mathrm{2}{x}−{y}=\mathrm{1} \\ $$$${y}=\mathrm{2}{x}+\mathrm{1} \\ $$$${m}=\mathrm{2} \\ $$$${m}_{\mathrm{0}} =−\frac{\mathrm{1}}{{m}}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${y}=−\frac{\mathrm{1}}{\mathrm{2}}.{x}+{C} \\ $$$$−\mathrm{1}=−\mathrm{1}+{C} \\ $$$${C}=\mathrm{0} \\ $$$${y}=−\frac{\mathrm{1}}{\mathrm{2}}{x}\Rightarrow\mathrm{2}{y}+{x}=\mathrm{0} \\ $$

Commented by mohammad17 last updated on 19/Sep/20

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Answered by mathmax by abdo last updated on 19/Sep/20

let d  : y =mx +p      A(2,−1) ∈d ⇒−1=2m+p ⇒p =−1−2m ⇒  d    y =mx−2m−1    we have  Δ  2x−y =1 ⇒y =2x+1  d perpendicular to Δ ⇒2m =−1 ⇒m=−(1/2) ⇒  d→y =−(x/2) −2(−(1/2))−1 =−(x/2) ⇒2y=−x ⇒x+2y =0 ⇒  d→x+2y =0

$$\mathrm{let}\:\mathrm{d}\:\::\:\mathrm{y}\:=\mathrm{mx}\:+\mathrm{p}\:\:\:\:\:\:\mathrm{A}\left(\mathrm{2},−\mathrm{1}\right)\:\in\mathrm{d}\:\Rightarrow−\mathrm{1}=\mathrm{2m}+\mathrm{p}\:\Rightarrow\mathrm{p}\:=−\mathrm{1}−\mathrm{2m}\:\Rightarrow \\ $$$$\mathrm{d}\:\:\:\:\mathrm{y}\:=\mathrm{mx}−\mathrm{2m}−\mathrm{1}\:\:\:\:\mathrm{we}\:\mathrm{have}\:\:\Delta\:\:\mathrm{2x}−\mathrm{y}\:=\mathrm{1}\:\Rightarrow\mathrm{y}\:=\mathrm{2x}+\mathrm{1} \\ $$$$\mathrm{d}\:\mathrm{perpendicular}\:\mathrm{to}\:\Delta\:\Rightarrow\mathrm{2m}\:=−\mathrm{1}\:\Rightarrow\mathrm{m}=−\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow \\ $$$$\mathrm{d}\rightarrow\mathrm{y}\:=−\frac{\mathrm{x}}{\mathrm{2}}\:−\mathrm{2}\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)−\mathrm{1}\:=−\frac{\mathrm{x}}{\mathrm{2}}\:\Rightarrow\mathrm{2y}=−\mathrm{x}\:\Rightarrow\mathrm{x}+\mathrm{2y}\:=\mathrm{0}\:\Rightarrow \\ $$$$\mathrm{d}\rightarrow\mathrm{x}+\mathrm{2y}\:=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com