Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 114330 by mnjuly1970 last updated on 18/Sep/20

Commented by mnjuly1970 last updated on 18/Sep/20

easy question↑↑↑

$${easy}\:{question}\uparrow\uparrow\uparrow \\ $$

Answered by Dwaipayan Shikari last updated on 18/Sep/20

λ_1 =∫_0 ^∞ ((log(1+x^2 ))/(1+x^2 ))dx  ∫_0 ^(π/2) ((log(1+tan^2 θ))/(sec^2 θ)).sec^2 θdθ  −2∫_0 ^(π/2) log(cosθ)dθ=πlog(2)  λ_2 =∫_0 ^(π/4) ((log(1+tanθ))/(sec^2 θ)).sec^2 θdθ  =∫_0 ^(π/4) log(cosx+sinx)−log(cosx)=∫_0 ^(π/4) (1/2)log2+log(cos((π/4)−x))−log(cosx)=I  =(π/8)log(2)+0=(π/8)log(2)  (λ_1 /λ_2 )=((πlog(2))/((π/8)log(2)))=8

$$\lambda_{\mathrm{1}} =\int_{\mathrm{0}} ^{\infty} \frac{{log}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{log}\left(\mathrm{1}+{tan}^{\mathrm{2}} \theta\right)}{{sec}^{\mathrm{2}} \theta}.{sec}^{\mathrm{2}} \theta{d}\theta \\ $$$$−\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left({cos}\theta\right){d}\theta=\pi{log}\left(\mathrm{2}\right) \\ $$$$\lambda_{\mathrm{2}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{log}\left(\mathrm{1}+{tan}\theta\right)}{{sec}^{\mathrm{2}} \theta}.{sec}^{\mathrm{2}} \theta{d}\theta \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {log}\left({cosx}+{sinx}\right)−{log}\left({cosx}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{\mathrm{1}}{\mathrm{2}}{log}\mathrm{2}+{log}\left({cos}\left(\frac{\pi}{\mathrm{4}}−{x}\right)\right)−{log}\left({cosx}\right)={I} \\ $$$$=\frac{\pi}{\mathrm{8}}{log}\left(\mathrm{2}\right)+\mathrm{0}=\frac{\pi}{\mathrm{8}}{log}\left(\mathrm{2}\right) \\ $$$$\frac{\lambda_{\mathrm{1}} }{\lambda_{\mathrm{2}} }=\frac{\pi{log}\left(\mathrm{2}\right)}{\frac{\pi}{\mathrm{8}}{log}\left(\mathrm{2}\right)}=\mathrm{8} \\ $$$$ \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 18/Sep/20

thank you sir .very nice.

$${thank}\:{you}\:{sir}\:.{very}\:{nice}. \\ $$

Answered by mathmax by abdo last updated on 18/Sep/20

we have λ_1 =∫_0 ^∞  ((ln(1+x^2 ))/(1+x^2 ))dx =_(x=tanθ)   ∫_0 ^(π/2)  ((ln(1+tan^2 θ))/(1+tan^2 θ))(1+tan^2 θ)dθ  =∫_0 ^(π/2) ln((1/(cos^2 θ)))dθ =−2∫_0 ^(π/2)  ln(cosθ)dθ =−2(−(π/2)ln(2))=πln(2)  λ_2 =∫_0 ^1  ((ln(1+x))/(1+x^2 ))dx =_(x=tant)    ∫_0 ^(π/4)  ((ln(1+tant))/(1+tan^2 t))(1+tan^2 t)dt  =∫_0 ^(π/4)  ln(1+tant)dt =_(t=(π/4)−u)   ∫_0 ^(π/4) ln(1+tan((π/4)−u) du  =∫_0 ^(π/4)  ln(1+((1−tanu)/(1+tanu)))du =∫_0 ^(π/4) ln(  (2/(1+tanu)))du  =(π/4)ln(2) −∫_0 ^(π/4) ln(1+tanu)du =(π/4)ln(2)−λ_2  ⇒  2λ_2 =(π/4)ln(2) ⇒λ_2 =(π/8)ln(2) ⇒(λ_1 /λ_2 ) =((πln(2))/((π/8)ln(2))) ⇒★(λ_1 /λ_2 ) =8 ★

$$\mathrm{we}\:\mathrm{have}\:\lambda_{\mathrm{1}} =\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:=_{\mathrm{x}=\mathrm{tan}\theta} \:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \theta\right)}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \theta}\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \theta\right)\mathrm{d}\theta \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{2}} \theta}\right)\mathrm{d}\theta\:=−\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{ln}\left(\mathrm{cos}\theta\right)\mathrm{d}\theta\:=−\mathrm{2}\left(−\frac{\pi}{\mathrm{2}}\mathrm{ln}\left(\mathrm{2}\right)\right)=\pi\mathrm{ln}\left(\mathrm{2}\right) \\ $$$$\lambda_{\mathrm{2}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:=_{\mathrm{x}=\mathrm{tant}} \:\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{tant}\right)}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \mathrm{t}}\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \mathrm{t}\right)\mathrm{dt} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\mathrm{ln}\left(\mathrm{1}+\mathrm{tant}\right)\mathrm{dt}\:=_{\mathrm{t}=\frac{\pi}{\mathrm{4}}−\mathrm{u}} \:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{1}+\mathrm{tan}\left(\frac{\pi}{\mathrm{4}}−\mathrm{u}\right)\:\mathrm{du}\right. \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}−\mathrm{tanu}}{\mathrm{1}+\mathrm{tanu}}\right)\mathrm{du}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\:\:\frac{\mathrm{2}}{\mathrm{1}+\mathrm{tanu}}\right)\mathrm{du} \\ $$$$=\frac{\pi}{\mathrm{4}}\mathrm{ln}\left(\mathrm{2}\right)\:−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{1}+\mathrm{tanu}\right)\mathrm{du}\:=\frac{\pi}{\mathrm{4}}\mathrm{ln}\left(\mathrm{2}\right)−\lambda_{\mathrm{2}} \:\Rightarrow \\ $$$$\mathrm{2}\lambda_{\mathrm{2}} =\frac{\pi}{\mathrm{4}}\mathrm{ln}\left(\mathrm{2}\right)\:\Rightarrow\lambda_{\mathrm{2}} =\frac{\pi}{\mathrm{8}}\mathrm{ln}\left(\mathrm{2}\right)\:\Rightarrow\frac{\lambda_{\mathrm{1}} }{\lambda_{\mathrm{2}} }\:=\frac{\pi\mathrm{ln}\left(\mathrm{2}\right)}{\frac{\pi}{\mathrm{8}}\mathrm{ln}\left(\mathrm{2}\right)}\:\Rightarrow\bigstar\frac{\lambda_{\mathrm{1}} }{\lambda_{\mathrm{2}} }\:=\mathrm{8}\:\bigstar \\ $$

Commented by mnjuly1970 last updated on 18/Sep/20

thank you master (ostad) in  our language.very nice.grateful     teful

$${thank}\:{you}\:{master}\:\left({ostad}\right)\:{in} \\ $$$${our}\:{language}.{very}\:{nice}.{grateful}\: \\ $$$$ \\ $$$${teful} \\ $$

Commented by mathmax by abdo last updated on 18/Sep/20

you are welcome sir

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com