Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 113486 by mr W last updated on 13/Sep/20

Commented by mr W last updated on 13/Sep/20

Repost Q112509

$${Repost}\:{Q}\mathrm{112509} \\ $$

Answered by mr W last updated on 13/Sep/20

40 chairs build 20 pairs with opposite  chairs.    for 17 boys to take the 40 chairs on  the table there are totally P_(17−1) ^(40−1)  ways.    to select two boys who sit opposite  there are C_2 ^(17)  ways.  to select 15 from 19 chair pairs there  are C_(15) ^(19)  ways. to arrange the 15 boys  in these chairs there are 15!×2^(15)   ways.  totally C_2 ^(17) ×C_(15) ^(19) ×15!×2^(15) .    p=((C_2 ^(17) ×C_(15) ^(19) ×15!×2^(15) )/P_(16) ^(39) )=2.8627%

$$\mathrm{40}\:{chairs}\:{build}\:\mathrm{20}\:{pairs}\:{with}\:{opposite} \\ $$$${chairs}. \\ $$$$ \\ $$$${for}\:\mathrm{17}\:{boys}\:{to}\:{take}\:{the}\:\mathrm{40}\:{chairs}\:{on} \\ $$$${the}\:{table}\:{there}\:{are}\:{totally}\:{P}_{\mathrm{17}−\mathrm{1}} ^{\mathrm{40}−\mathrm{1}} \:{ways}. \\ $$$$ \\ $$$${to}\:{select}\:{two}\:{boys}\:{who}\:{sit}\:{opposite} \\ $$$${there}\:{are}\:{C}_{\mathrm{2}} ^{\mathrm{17}} \:{ways}. \\ $$$${to}\:{select}\:\mathrm{15}\:{from}\:\mathrm{19}\:{chair}\:{pairs}\:{there} \\ $$$${are}\:{C}_{\mathrm{15}} ^{\mathrm{19}} \:{ways}.\:{to}\:{arrange}\:{the}\:\mathrm{15}\:{boys} \\ $$$${in}\:{these}\:{chairs}\:{there}\:{are}\:\mathrm{15}!×\mathrm{2}^{\mathrm{15}} \\ $$$${ways}. \\ $$$${totally}\:{C}_{\mathrm{2}} ^{\mathrm{17}} ×{C}_{\mathrm{15}} ^{\mathrm{19}} ×\mathrm{15}!×\mathrm{2}^{\mathrm{15}} . \\ $$$$ \\ $$$${p}=\frac{{C}_{\mathrm{2}} ^{\mathrm{17}} ×{C}_{\mathrm{15}} ^{\mathrm{19}} ×\mathrm{15}!×\mathrm{2}^{\mathrm{15}} }{{P}_{\mathrm{16}} ^{\mathrm{39}} }=\mathrm{2}.\mathrm{8627\%} \\ $$

Commented by I want to learn more last updated on 13/Sep/20

Thanks sir,  i really appreciate

$$\mathrm{Thanks}\:\mathrm{sir},\:\:\mathrm{i}\:\mathrm{really}\:\mathrm{appreciate} \\ $$

Commented by I want to learn more last updated on 14/Sep/20

Sir,  i have the questions.    (1)  I thought for circular arrangement, for this case, we should select  17 chairs from 40 chairs and arrange the boys       Total arrangement   =  ^(40) C_(17)  × (17  −  1)!    But you said:  Total arrangement   =   ^(40  −  1) P_(17  −  1)   I just want to understand sir.    (2)   I still don′t get the   2^(15)   sir.      15!  ×  2^(15) .   please explain sir. Thanks

$$\mathrm{Sir},\:\:\mathrm{i}\:\mathrm{have}\:\mathrm{the}\:\mathrm{questions}. \\ $$$$ \\ $$$$\left(\mathrm{1}\right)\:\:\mathrm{I}\:\mathrm{thought}\:\mathrm{for}\:\mathrm{circular}\:\mathrm{arrangement},\:\mathrm{for}\:\mathrm{this}\:\mathrm{case},\:\mathrm{we}\:\mathrm{should}\:\mathrm{select} \\ $$$$\mathrm{17}\:\mathrm{chairs}\:\mathrm{from}\:\mathrm{40}\:\mathrm{chairs}\:\mathrm{and}\:\mathrm{arrange}\:\mathrm{the}\:\mathrm{boys} \\ $$$$\:\:\:\:\:\mathrm{Total}\:\mathrm{arrangement}\:\:\:=\:\:\:^{\mathrm{40}} \mathrm{C}_{\mathrm{17}} \:×\:\left(\mathrm{17}\:\:−\:\:\mathrm{1}\right)! \\ $$$$ \\ $$$$\mathrm{But}\:\mathrm{you}\:\mathrm{said}:\:\:\mathrm{Total}\:\mathrm{arrangement}\:\:\:=\:\:\:\:^{\mathrm{40}\:\:−\:\:\mathrm{1}} \mathrm{P}_{\mathrm{17}\:\:−\:\:\mathrm{1}} \\ $$$$\mathrm{I}\:\mathrm{just}\:\mathrm{want}\:\mathrm{to}\:\mathrm{understand}\:\mathrm{sir}. \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\:\:\:\mathrm{I}\:\mathrm{still}\:\mathrm{don}'\mathrm{t}\:\mathrm{get}\:\mathrm{the}\:\:\:\mathrm{2}^{\mathrm{15}} \:\:\mathrm{sir}.\:\:\:\:\:\:\mathrm{15}!\:\:×\:\:\mathrm{2}^{\mathrm{15}} .\:\:\:\mathrm{please}\:\mathrm{explain}\:\mathrm{sir}.\:\mathrm{Thanks} \\ $$

Commented by mr W last updated on 14/Sep/20

(2)  in the 15 pairs of seats each boy can  select one of the two seats, so totally  there are 2^(15)  different ways.

$$\left(\mathrm{2}\right) \\ $$$${in}\:{the}\:\mathrm{15}\:{pairs}\:{of}\:{seats}\:{each}\:{boy}\:{can} \\ $$$${select}\:{one}\:{of}\:{the}\:{two}\:{seats},\:{so}\:{totally} \\ $$$${there}\:{are}\:\mathrm{2}^{\mathrm{15}} \:{different}\:{ways}. \\ $$

Commented by mr W last updated on 14/Sep/20

(1)  you can read a text book about circular  arrangement.  my way to understand:  in a circular arrangement it doesn′t  matter where the arrangement  beginns. so we can fix a boy in a seat.  we only need to determine in how  many ways we can arrange the   remaining 16 boys in the remaining  39 seats, that is P_(16) ^(39) .

$$\left(\mathrm{1}\right) \\ $$$${you}\:{can}\:{read}\:{a}\:{text}\:{book}\:{about}\:{circular} \\ $$$${arrangement}. \\ $$$${my}\:{way}\:{to}\:{understand}: \\ $$$${in}\:{a}\:{circular}\:{arrangement}\:{it}\:{doesn}'{t} \\ $$$${matter}\:{where}\:{the}\:{arrangement} \\ $$$${beginns}.\:{so}\:{we}\:{can}\:{fix}\:{a}\:{boy}\:{in}\:{a}\:{seat}. \\ $$$${we}\:{only}\:{need}\:{to}\:{determine}\:{in}\:{how} \\ $$$${many}\:{ways}\:{we}\:{can}\:{arrange}\:{the}\: \\ $$$${remaining}\:\mathrm{16}\:{boys}\:{in}\:{the}\:{remaining} \\ $$$$\mathrm{39}\:{seats},\:{that}\:{is}\:{P}_{\mathrm{16}} ^{\mathrm{39}} . \\ $$

Commented by I want to learn more last updated on 14/Sep/20

Thank you sir, i understand now

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{sir},\:\mathrm{i}\:\mathrm{understand}\:\mathrm{now} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com