Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 113455 by AbhishekBasnet last updated on 13/Sep/20

Commented by som(math1967) last updated on 13/Sep/20

Number of one kind x and  other kind y  x≥0,y≥0  150x+75y≤1500  50x+75y≤600  Max.profit=P_(max) =5x+3y  Corner points are  (0,0) ,(10,0),(9,2),(0,8)  ∴P_(max)  at (9,2)=5×9+3×2                                 =Rs51

$$\mathrm{Number}\:\mathrm{of}\:\mathrm{one}\:\mathrm{kind}\:\mathrm{x}\:\mathrm{and} \\ $$$$\mathrm{other}\:\mathrm{kind}\:\mathrm{y} \\ $$$$\mathrm{x}\geqslant\mathrm{0},\mathrm{y}\geqslant\mathrm{0} \\ $$$$\mathrm{150x}+\mathrm{75y}\leqslant\mathrm{1500} \\ $$$$\mathrm{50x}+\mathrm{75y}\leqslant\mathrm{600} \\ $$$$\mathrm{Max}.\mathrm{profit}=\mathrm{P}_{\mathrm{max}} =\mathrm{5x}+\mathrm{3y} \\ $$$$\mathrm{Corner}\:\mathrm{points}\:\mathrm{are} \\ $$$$\left(\mathrm{0},\mathrm{0}\right)\:,\left(\mathrm{10},\mathrm{0}\right),\left(\mathrm{9},\mathrm{2}\right),\left(\mathrm{0},\mathrm{8}\right) \\ $$$$\therefore\mathrm{P}_{\mathrm{max}} \:\mathrm{at}\:\left(\mathrm{9},\mathrm{2}\right)=\mathrm{5}×\mathrm{9}+\mathrm{3}×\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{Rs51} \\ $$

Answered by 1549442205PVT last updated on 13/Sep/20

Suppose first kind of cake is made x  boxes and second kind of cakes is  made y boxes.From the hypothesis   we has the system :   { ((150x+75y=1500(1))),((50x+75y=600(2))) :}  Substracting two equations we get  100x=900⇒x=9.Replace we get  y=2.Then the profits obtain equal to  9×5+2×3=51 (Rs)  •If made 10 boxes of first kind of cakes  then the second kind of cakes has no  boxes because 10×150=1500gr flour  ,so has no flour to make second kind of cakes  •From above result we infer a+b≤11  and a≤9⇒b≤11−a  The profits value obtain is  M=5a+3b≤5a+3(11−a)=2a+33  ≤2×9+33=51  Thus,the best option for candy  product are 9 boxes of 1 type and 2  boxes of 2 type

$$\mathrm{Suppose}\:\mathrm{first}\:\mathrm{kind}\:\mathrm{of}\:\mathrm{cake}\:\mathrm{is}\:\mathrm{made}\:\mathrm{x} \\ $$$$\mathrm{boxes}\:\mathrm{and}\:\mathrm{second}\:\mathrm{kind}\:\mathrm{of}\:\mathrm{cakes}\:\mathrm{is} \\ $$$$\mathrm{made}\:\mathrm{y}\:\mathrm{boxes}.\mathrm{From}\:\mathrm{the}\:\mathrm{hypothesis}\: \\ $$$$\mathrm{we}\:\mathrm{has}\:\mathrm{the}\:\mathrm{system}\:: \\ $$$$\begin{cases}{\mathrm{150x}+\mathrm{75y}=\mathrm{1500}\left(\mathrm{1}\right)}\\{\mathrm{50x}+\mathrm{75y}=\mathrm{600}\left(\mathrm{2}\right)}\end{cases} \\ $$$$\mathrm{Substracting}\:\mathrm{two}\:\mathrm{equations}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{100x}=\mathrm{900}\Rightarrow\mathrm{x}=\mathrm{9}.\mathrm{Replace}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{y}=\mathrm{2}.\mathrm{Then}\:\mathrm{the}\:\mathrm{profits}\:\mathrm{obtain}\:\mathrm{equal}\:\mathrm{to} \\ $$$$\mathrm{9}×\mathrm{5}+\mathrm{2}×\mathrm{3}=\mathrm{51}\:\left(\mathrm{Rs}\right) \\ $$$$\bullet\mathrm{If}\:\mathrm{made}\:\mathrm{10}\:\mathrm{boxes}\:\mathrm{of}\:\mathrm{first}\:\mathrm{kind}\:\mathrm{of}\:\mathrm{cakes} \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{second}\:\mathrm{kind}\:\mathrm{of}\:\mathrm{cakes}\:\mathrm{has}\:\mathrm{no} \\ $$$$\mathrm{boxes}\:\mathrm{because}\:\mathrm{10}×\mathrm{150}=\mathrm{1500gr}\:\mathrm{flour} \\ $$$$,\mathrm{so}\:\mathrm{has}\:\mathrm{no}\:\mathrm{flour}\:\mathrm{to}\:\mathrm{make}\:\mathrm{second}\:\mathrm{kind}\:\mathrm{of}\:\mathrm{cakes} \\ $$$$\bullet\mathrm{From}\:\mathrm{above}\:\mathrm{result}\:\mathrm{we}\:\mathrm{infer}\:\mathrm{a}+\mathrm{b}\leqslant\mathrm{11} \\ $$$$\mathrm{and}\:\mathrm{a}\leqslant\mathrm{9}\Rightarrow\mathrm{b}\leqslant\mathrm{11}−\mathrm{a} \\ $$$$\mathrm{The}\:\mathrm{profits}\:\mathrm{value}\:\mathrm{obtain}\:\mathrm{is} \\ $$$$\mathrm{M}=\mathrm{5a}+\mathrm{3b}\leqslant\mathrm{5a}+\mathrm{3}\left(\mathrm{11}−\mathrm{a}\right)=\mathrm{2a}+\mathrm{33} \\ $$$$\leqslant\mathrm{2}×\mathrm{9}+\mathrm{33}=\mathrm{51} \\ $$$$\mathrm{Thus},\mathrm{the}\:\mathrm{best}\:\mathrm{option}\:\mathrm{for}\:\mathrm{candy} \\ $$$$\mathrm{product}\:\mathrm{are}\:\mathrm{9}\:\mathrm{boxes}\:\mathrm{of}\:\mathrm{1}\:\mathrm{type}\:\mathrm{and}\:\mathrm{2} \\ $$$$\mathrm{boxes}\:\mathrm{of}\:\mathrm{2}\:\mathrm{type} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com