Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 112818 by Algoritm last updated on 09/Sep/20

Commented by Algoritm last updated on 09/Sep/20

xlog_2 2^x^x  =3  ≠  2^x^x^x   =8

$$\mathrm{xlog}_{\mathrm{2}} \mathrm{2}^{\mathrm{x}^{\mathrm{x}} } =\mathrm{3}\:\:\neq\:\:\mathrm{2}^{\mathrm{x}^{\mathrm{x}^{\mathrm{x}} } } =\mathrm{8} \\ $$

Commented by Algoritm last updated on 09/Sep/20

x^x^x  =3

$$\mathrm{x}^{\mathrm{x}^{\mathrm{x}} } =\mathrm{3} \\ $$

Commented by mr W last updated on 09/Sep/20

i think it′s not correct sir!  2^x^x^x   ≠(2^x^x  )^x =2^(x^x x) =2^x^(x+1)    2^x^x  ≠(2^x )^x =2^x^2

$${i}\:{think}\:{it}'{s}\:{not}\:{correct}\:{sir}! \\ $$$$\mathrm{2}^{{x}^{{x}^{{x}} } } \neq\left(\mathrm{2}^{{x}^{{x}} } \right)^{{x}} =\mathrm{2}^{{x}^{{x}} {x}} =\mathrm{2}^{{x}^{{x}+\mathrm{1}} } \\ $$$$\mathrm{2}^{{x}^{{x}} } \neq\left(\mathrm{2}^{{x}} \right)^{{x}} =\mathrm{2}^{{x}^{\mathrm{2}} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com