Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 110939 by ajfour last updated on 31/Aug/20

Commented by ajfour last updated on 31/Aug/20

If both ellipses are congruent, find  tan α.

$${If}\:{both}\:{ellipses}\:{are}\:{congruent},\:{find} \\ $$$$\mathrm{tan}\:\alpha. \\ $$

Answered by ajfour last updated on 01/Sep/20

Answered by mr W last updated on 01/Sep/20

Commented by mr W last updated on 02/Sep/20

Commented by ajfour last updated on 02/Sep/20

let P(p,−q)   (p^2 /a^2 )+(q^2 /b^2 )=1               .......(3)  tangent at P  ((px)/a^2 )+((−qy)/b^2 )=1  slope=((b^2 /a^2 ))((p/q)) = tan γ  (({(p+h)^2 +(−q+k)^2 }cos^2 α)/a^2 )    +(({(p+h)^2 +(−q+k)^2 }sin^2 α)/b^2 )=1  ⇒   (p+h)^2 +(−q+k)^2 =((a^2 b^2 )/(b^2 cos^2 α+a^2 sin^2 α))                 ..........(4)  And    (u^2 /a^2 )+(v^2 /b^2 )=1    (eq. of lower ellipse in                                             u-v axes)  say  CP^( 2)  =s^2 =(p+h)^2 +(−q+k)^2                                                    eq. of tangent at P  ((uscos α)/a^2 )+((vssin α)/b^2 )=1  slope = −((b^2 /a^2 ))(cot α) = −tan β       β+γ=φ  ⇒     tan^(−1) (((b^2 cos α)/(a^2 sin α)))+tan^(−1) (((b^2 p)/(a^2 q)))=φ  ⇒  (p/q)=(a^2 /b^2 ){((λ−(b^2 /(a^2 tan α)))/(1+((λb^2 )/(a^2 tan α))))}         .....(5)    scos (α+tan^(−1) λ)=p+h          .....(6)    ssin (α+tan^(−1) λ)=−q+k       .....(7)    unknowns are      (b/a),  λ, h, k, p, q, α .  .........

$${let}\:{P}\left({p},−{q}\right)\: \\ $$$$\frac{{p}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{q}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.......\left(\mathrm{3}\right) \\ $$$${tangent}\:{at}\:{P} \\ $$$$\frac{{px}}{{a}^{\mathrm{2}} }+\frac{−{qy}}{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${slope}=\left(\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right)\left(\frac{{p}}{{q}}\right)\:=\:\mathrm{tan}\:\gamma \\ $$$$\frac{\left\{\left({p}+{h}\right)^{\mathrm{2}} +\left(−{q}+{k}\right)^{\mathrm{2}} \right\}\mathrm{cos}\:^{\mathrm{2}} \alpha}{{a}^{\mathrm{2}} } \\ $$$$\:\:+\frac{\left\{\left({p}+{h}\right)^{\mathrm{2}} +\left(−{q}+{k}\right)^{\mathrm{2}} \right\}\mathrm{sin}\:^{\mathrm{2}} \alpha}{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\Rightarrow \\ $$$$\:\left({p}+{h}\right)^{\mathrm{2}} +\left(−{q}+{k}\right)^{\mathrm{2}} =\frac{{a}^{\mathrm{2}} {b}^{\mathrm{2}} }{{b}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \alpha+{a}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \alpha} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:..........\left(\mathrm{4}\right) \\ $$$${And} \\ $$$$\:\:\frac{{u}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{v}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:\:\:\:\left({eq}.\:{of}\:{lower}\:{ellipse}\:{in}\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{u}-{v}\:{axes}\right) \\ $$$${say}\:\:{CP}^{\:\mathrm{2}} \:={s}^{\mathrm{2}} =\left({p}+{h}\right)^{\mathrm{2}} +\left(−{q}+{k}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$${eq}.\:{of}\:{tangent}\:{at}\:{P} \\ $$$$\frac{{us}\mathrm{cos}\:\alpha}{{a}^{\mathrm{2}} }+\frac{{vs}\mathrm{sin}\:\alpha}{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${slope}\:=\:−\left(\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right)\left(\mathrm{cot}\:\alpha\right)\:=\:−\mathrm{tan}\:\beta \\ $$$$\:\:\:\:\:\beta+\gamma=\phi \\ $$$$\Rightarrow\:\:\:\:\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{{b}^{\mathrm{2}} \mathrm{cos}\:\alpha}{{a}^{\mathrm{2}} \mathrm{sin}\:\alpha}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\frac{{b}^{\mathrm{2}} {p}}{{a}^{\mathrm{2}} {q}}\right)=\phi \\ $$$$\Rightarrow\:\:\frac{{p}}{{q}}=\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\left\{\frac{\lambda−\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} \mathrm{tan}\:\alpha}}{\mathrm{1}+\frac{\lambda{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} \mathrm{tan}\:\alpha}}\right\}\:\:\:\:\:\:\:\:\:.....\left(\mathrm{5}\right) \\ $$$$\:\:{s}\mathrm{cos}\:\left(\alpha+\mathrm{tan}^{−\mathrm{1}} \lambda\right)={p}+{h}\:\:\:\:\:\:\:\:\:\:.....\left(\mathrm{6}\right) \\ $$$$\:\:{s}\mathrm{sin}\:\left(\alpha+\mathrm{tan}^{−\mathrm{1}} \lambda\right)=−{q}+{k}\:\:\:\:\:\:\:.....\left(\mathrm{7}\right) \\ $$$$ \\ $$$${unknowns}\:{are} \\ $$$$\:\:\:\:\frac{{b}}{{a}},\:\:\lambda,\:{h},\:{k},\:{p},\:{q},\:\alpha\:. \\ $$$$......... \\ $$

Commented by mr W last updated on 02/Sep/20

eqn. of upper ellipse:  (x^2 /a^2 )+(y^2 /b^2 )=1   ...(i)  μ=(b/a)  λ=tan φ  C(−h,−k)  eqn. of CA:  y+k=(x+h)tan φ  ⇒λx−y+λh−k=0  eqn. of CB:  y+k=−((x+h)/(tan φ))  ⇒x+λy+h+λk=0    a^2 λ^2 +b^2 =(λh−k)^2   a^2 +b^2 λ^2 =(h+λk)^2   ⇒λh−k=+(√(a^2 λ^2 +b^2 ))  ⇒h+λk=(√(a^2 +b^2 λ^2 ))  ⇒h=((−λ(√(a^2 λ^2 +b^2 ))+(√(a^2 +b^2 λ^2 )))/(1+λ^2 ))  ⇒η=(h/a)=((−λ(√(λ^2 +μ^2 ))+(√(1+μ^2 λ^2 )))/(1+λ^2 ))  ⇒k=((λ(√(a^2 +b^2 λ^2 ))+(√(a^2 λ^2 +b^2 )))/( 1+λ^2 ))  ⇒κ=(k/a)=((λ(√(1+μ^2 λ^2 ))+(√(λ^2 +μ^2 )))/( 1+λ^2 ))    eqn. of lower ellipse:  (([(x+h)cos φ+(y+k)sin φ]^2 )/a^2 )+(([−(x+h)sin φ+(y+k)cos φ]^2 )/b^2 )=1  (([(x+h)+(y+k)λ]^2 )/a^2 )+(([−(x+h)λ+(y+k)]^2 )/b^2 )=1+λ^2    ...(ii)   (i) and (ii) should touch each other.    let x=a cos θ, y=−b sin θ for point P  ⇒[η+cos θ+(κ−μ sin θ)λ]^2 +(([κ−μ sin θ−(η+cos θ)λ]^2 )/μ^2 )=1+λ^2    ...(iii)  for given μ we can determine λ  such that (iii) has only one solution  for θ.  or for given λ we can determine μ.

$${eqn}.\:{of}\:{upper}\:{ellipse}: \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:\:\:...\left({i}\right) \\ $$$$\mu=\frac{{b}}{{a}} \\ $$$$\lambda=\mathrm{tan}\:\phi \\ $$$${C}\left(−{h},−{k}\right) \\ $$$${eqn}.\:{of}\:{CA}: \\ $$$${y}+{k}=\left({x}+{h}\right)\mathrm{tan}\:\phi \\ $$$$\Rightarrow\lambda{x}−{y}+\lambda{h}−{k}=\mathrm{0} \\ $$$${eqn}.\:{of}\:{CB}: \\ $$$${y}+{k}=−\frac{{x}+{h}}{\mathrm{tan}\:\phi} \\ $$$$\Rightarrow{x}+\lambda{y}+{h}+\lambda{k}=\mathrm{0} \\ $$$$ \\ $$$${a}^{\mathrm{2}} \lambda^{\mathrm{2}} +{b}^{\mathrm{2}} =\left(\lambda{h}−{k}\right)^{\mathrm{2}} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} \lambda^{\mathrm{2}} =\left({h}+\lambda{k}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\lambda{h}−{k}=+\sqrt{{a}^{\mathrm{2}} \lambda^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$$\Rightarrow{h}+\lambda{k}=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} \lambda^{\mathrm{2}} } \\ $$$$\Rightarrow{h}=\frac{−\lambda\sqrt{{a}^{\mathrm{2}} \lambda^{\mathrm{2}} +{b}^{\mathrm{2}} }+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} \lambda^{\mathrm{2}} }}{\mathrm{1}+\lambda^{\mathrm{2}} } \\ $$$$\Rightarrow\eta=\frac{{h}}{{a}}=\frac{−\lambda\sqrt{\lambda^{\mathrm{2}} +\mu^{\mathrm{2}} }+\sqrt{\mathrm{1}+\mu^{\mathrm{2}} \lambda^{\mathrm{2}} }}{\mathrm{1}+\lambda^{\mathrm{2}} } \\ $$$$\Rightarrow{k}=\frac{\lambda\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} \lambda^{\mathrm{2}} }+\sqrt{{a}^{\mathrm{2}} \lambda^{\mathrm{2}} +{b}^{\mathrm{2}} }}{\:\mathrm{1}+\lambda^{\mathrm{2}} } \\ $$$$\Rightarrow\kappa=\frac{{k}}{{a}}=\frac{\lambda\sqrt{\mathrm{1}+\mu^{\mathrm{2}} \lambda^{\mathrm{2}} }+\sqrt{\lambda^{\mathrm{2}} +\mu^{\mathrm{2}} }}{\:\mathrm{1}+\lambda^{\mathrm{2}} } \\ $$$$ \\ $$$${eqn}.\:{of}\:{lower}\:{ellipse}: \\ $$$$\frac{\left[\left({x}+{h}\right)\mathrm{cos}\:\phi+\left({y}+{k}\right)\mathrm{sin}\:\phi\right]^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{\left[−\left({x}+{h}\right)\mathrm{sin}\:\phi+\left({y}+{k}\right)\mathrm{cos}\:\phi\right]^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{\left[\left({x}+{h}\right)+\left({y}+{k}\right)\lambda\right]^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{\left[−\left({x}+{h}\right)\lambda+\left({y}+{k}\right)\right]^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}+\lambda^{\mathrm{2}} \:\:\:...\left({ii}\right) \\ $$$$\:\left({i}\right)\:{and}\:\left({ii}\right)\:{should}\:{touch}\:{each}\:{other}. \\ $$$$ \\ $$$${let}\:{x}={a}\:\mathrm{cos}\:\theta,\:{y}=−{b}\:\mathrm{sin}\:\theta\:{for}\:{point}\:{P} \\ $$$$\Rightarrow\left[\eta+\mathrm{cos}\:\theta+\left(\kappa−\mu\:\mathrm{sin}\:\theta\right)\lambda\right]^{\mathrm{2}} +\frac{\left[\kappa−\mu\:\mathrm{sin}\:\theta−\left(\eta+\mathrm{cos}\:\theta\right)\lambda\right]^{\mathrm{2}} }{\mu^{\mathrm{2}} }=\mathrm{1}+\lambda^{\mathrm{2}} \:\:\:...\left({iii}\right) \\ $$$${for}\:{given}\:\mu\:{we}\:{can}\:{determine}\:\lambda \\ $$$${such}\:{that}\:\left({iii}\right)\:{has}\:{only}\:{one}\:{solution} \\ $$$${for}\:\theta. \\ $$$${or}\:{for}\:{given}\:\lambda\:{we}\:{can}\:{determine}\:\mu. \\ $$

Commented by ajfour last updated on 02/Sep/20

Isn′t it okay Sir, 7 eqns. & 7 unknowns..

$${Isn}'{t}\:{it}\:{okay}\:{Sir},\:\mathrm{7}\:{eqns}.\:\&\:\mathrm{7}\:{unknowns}.. \\ $$

Commented by mr W last updated on 02/Sep/20

it′s okay sir! let me see if we can   simplify more.

$${it}'{s}\:{okay}\:{sir}!\:{let}\:{me}\:{see}\:{if}\:{we}\:{can}\: \\ $$$${simplify}\:{more}. \\ $$

Commented by mr W last updated on 02/Sep/20

Commented by mr W last updated on 02/Sep/20

Commented by mr W last updated on 02/Sep/20

Commented by ajfour last updated on 02/Sep/20

thank you Sir, but for μ=1  there is no λ i think...

$${thank}\:{you}\:{Sir},\:{but}\:{for}\:\mu=\mathrm{1} \\ $$$${there}\:{is}\:{no}\:\lambda\:{i}\:{think}... \\ $$

Commented by mr W last updated on 02/Sep/20

correct!  μ_(max) ≈0.38

$${correct}! \\ $$$$\mu_{{max}} \approx\mathrm{0}.\mathrm{38} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com