Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 110848 by ajfour last updated on 31/Aug/20

Commented by ajfour last updated on 31/Aug/20

Find c in terms of a and b.

$${Find}\:{c}\:{in}\:{terms}\:{of}\:{a}\:{and}\:{b}. \\ $$

Commented by bemath last updated on 31/Aug/20

(√c) = ((√(ab))/( (√a)+(√b))) ⇒c = ((ab)/(a+b+2(√(ab))))

$$\sqrt{\mathrm{c}}\:=\:\frac{\sqrt{\mathrm{ab}}}{\:\sqrt{\mathrm{a}}+\sqrt{\mathrm{b}}}\:\Rightarrow\mathrm{c}\:=\:\frac{\mathrm{ab}}{\mathrm{a}+\mathrm{b}+\mathrm{2}\sqrt{\mathrm{ab}}} \\ $$

Commented by mr W last updated on 31/Aug/20

if your answer were true, you get  for a=b=R  ⇒c=(R/4)  but this is wrong.

$${if}\:{your}\:{answer}\:{were}\:{true},\:{you}\:{get} \\ $$$${for}\:{a}={b}={R} \\ $$$$\Rightarrow{c}=\frac{{R}}{\mathrm{4}} \\ $$$${but}\:{this}\:{is}\:{wrong}. \\ $$

Answered by mr W last updated on 31/Aug/20

[(√((a+c)^2 −(a−c)^2 ))+(√((b+c)^2 −(b−c)^2 ))]^2 +(b−a)^2 =[(√((a+c)^2 −c^2 ))+(√((b+c)^2 −c^2 ))]^2   [2(√(ac))+2(√(bc))]^2 +(b−a)^2 =[(√(a(a+2c)))+(√(b(b+2c)))]^2   (a+b+4(√(ab)))c−ab=(√(ab(a+2c)(b+2c)))  (a+b+4(√(ab)))^2 c^2 +a^2 b^2 −2ab(a+b+4(√(ab)))c=ab[ab+2(a+b)c+4c^2 ]  [a^2 +b^2 +14ab+8(a+b)(√(ab))]c=4ab(a+b+2(√(ab)))  ⇒c=((4ab(a+b+2(√(ab))))/(a^2 +b^2 +14ab+8(a+b)(√(ab))))  ⇒c=((4ab)/(a+b+6(√(ab))))  if b=a:  ⇒c=(a/2) ⇒ok

$$\left[\sqrt{\left({a}+{c}\right)^{\mathrm{2}} −\left({a}−{c}\right)^{\mathrm{2}} }+\sqrt{\left({b}+{c}\right)^{\mathrm{2}} −\left({b}−{c}\right)^{\mathrm{2}} }\right]^{\mathrm{2}} +\left({b}−{a}\right)^{\mathrm{2}} =\left[\sqrt{\left({a}+{c}\right)^{\mathrm{2}} −{c}^{\mathrm{2}} }+\sqrt{\left({b}+{c}\right)^{\mathrm{2}} −{c}^{\mathrm{2}} }\right]^{\mathrm{2}} \\ $$$$\left[\mathrm{2}\sqrt{{ac}}+\mathrm{2}\sqrt{{bc}}\right]^{\mathrm{2}} +\left({b}−{a}\right)^{\mathrm{2}} =\left[\sqrt{{a}\left({a}+\mathrm{2}{c}\right)}+\sqrt{{b}\left({b}+\mathrm{2}{c}\right)}\right]^{\mathrm{2}} \\ $$$$\left({a}+{b}+\mathrm{4}\sqrt{{ab}}\right){c}−{ab}=\sqrt{{ab}\left({a}+\mathrm{2}{c}\right)\left({b}+\mathrm{2}{c}\right)} \\ $$$$\left({a}+{b}+\mathrm{4}\sqrt{{ab}}\right)^{\mathrm{2}} {c}^{\mathrm{2}} +{a}^{\mathrm{2}} {b}^{\mathrm{2}} −\mathrm{2}{ab}\left({a}+{b}+\mathrm{4}\sqrt{{ab}}\right){c}={ab}\left[{ab}+\mathrm{2}\left({a}+{b}\right){c}+\mathrm{4}{c}^{\mathrm{2}} \right] \\ $$$$\left[{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{14}{ab}+\mathrm{8}\left({a}+{b}\right)\sqrt{{ab}}\right]{c}=\mathrm{4}{ab}\left({a}+{b}+\mathrm{2}\sqrt{{ab}}\right) \\ $$$$\Rightarrow{c}=\frac{\mathrm{4}{ab}\left({a}+{b}+\mathrm{2}\sqrt{{ab}}\right)}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{14}{ab}+\mathrm{8}\left({a}+{b}\right)\sqrt{{ab}}} \\ $$$$\Rightarrow{c}=\frac{\mathrm{4}{ab}}{{a}+{b}+\mathrm{6}\sqrt{{ab}}} \\ $$$${if}\:{b}={a}: \\ $$$$\Rightarrow{c}=\frac{{a}}{\mathrm{2}}\:\Rightarrow{ok} \\ $$

Commented by ajfour last updated on 31/Aug/20

followed sir!  2 good! thanks.

$${followed}\:{sir}!\:\:\mathrm{2}\:{good}!\:{thanks}. \\ $$

Answered by mnjuly1970 last updated on 31/Aug/20

common tangant, circles 1 and 2   :=2(√(ca))    common tangant,circles 2 and 3    :=2(√(cb))     common tangant,circles 1 and 3  : = 2(√(ab))    2(√(ab)) =2(√(ac)) +2(√(bc )) ⇒((√(ab))/( (√(abc))))=((√(ac))/( (√(abc)))) +((√(bc))/( (√(abc))))     ∴ (1/( (√c)))=(1/( (√a)))+(1/( (√b)))  ....(q.e.d)           ....M.N.july 1970 #

$${common}\:{tangant},\:{circles}\:\mathrm{1}\:{and}\:\mathrm{2}\:\:\::=\mathrm{2}\sqrt{{ca}} \\ $$$$ \\ $$$${common}\:{tangant},{circles}\:\mathrm{2}\:{and}\:\mathrm{3}\:\:\:\::=\mathrm{2}\sqrt{{cb}}\: \\ $$$$ \\ $$$${common}\:{tangant},{circles}\:\mathrm{1}\:{and}\:\mathrm{3}\:\::\:=\:\mathrm{2}\sqrt{{ab}} \\ $$$$ \\ $$$$\mathrm{2}\sqrt{{ab}}\:=\mathrm{2}\sqrt{{ac}}\:+\mathrm{2}\sqrt{{bc}\:}\:\Rightarrow\frac{\sqrt{{ab}}}{\:\sqrt{{abc}}}=\frac{\sqrt{{ac}}}{\:\sqrt{{abc}}}\:+\frac{\sqrt{{bc}}}{\:\sqrt{{abc}}} \\ $$$$\:\:\:\therefore\:\frac{\mathrm{1}}{\:\sqrt{{c}}}=\frac{\mathrm{1}}{\:\sqrt{{a}}}+\frac{\mathrm{1}}{\:\sqrt{{b}}}\:\:....\left({q}.{e}.{d}\right) \\ $$$$\:\:\:\:\:\:\:\:\:....\mathscr{M}.\mathscr{N}.{july}\:\mathrm{1970}\:# \\ $$$$ \\ $$

Answered by ajfour last updated on 31/Aug/20

let center of middle circle  C(0,c)  left circle  A(−2(√(ac)), a)  right circle  B(2(√(bc)), b)  eq. of AB:   y−a=((((√b)−(√a)))/(2(√c)))(x+2(√(ac)))  its ⊥distance from C is c.  ⇒   c=((((√b)−(√a))(√a)+a−c)/( (√(1+((((√b)−(√a))^2 )/(4c))))))     c(√(1+((((√b)−(√a))^2 )/(4c))))=(√(ab))−c  ⇒   c^2 +(((b+a−2(√(ab)))c)/4)=ab+c^2 −2c(√(ab))  ⇒  c=((ab)/(2(√(ab))+((b+a−2(√(ab)))/4)))       c=((4ab)/(a+b+6(√(ab)))) .

$${let}\:{center}\:{of}\:{middle}\:{circle}\:\:{C}\left(\mathrm{0},{c}\right) \\ $$$${left}\:{circle}\:\:{A}\left(−\mathrm{2}\sqrt{{ac}},\:{a}\right) \\ $$$${right}\:{circle}\:\:{B}\left(\mathrm{2}\sqrt{{bc}},\:{b}\right) \\ $$$${eq}.\:{of}\:{AB}:\:\:\:{y}−{a}=\frac{\left(\sqrt{{b}}−\sqrt{{a}}\right)}{\mathrm{2}\sqrt{{c}}}\left({x}+\mathrm{2}\sqrt{{ac}}\right) \\ $$$${its}\:\bot{distance}\:{from}\:{C}\:{is}\:{c}. \\ $$$$\Rightarrow\:\:\:{c}=\frac{\left(\sqrt{{b}}−\sqrt{{a}}\right)\sqrt{{a}}+{a}−{c}}{\:\sqrt{\mathrm{1}+\frac{\left(\sqrt{{b}}−\sqrt{{a}}\right)^{\mathrm{2}} }{\mathrm{4}{c}}}} \\ $$$$\:\:\:{c}\sqrt{\mathrm{1}+\frac{\left(\sqrt{{b}}−\sqrt{{a}}\right)^{\mathrm{2}} }{\mathrm{4}{c}}}=\sqrt{{ab}}−{c} \\ $$$$\Rightarrow\:\:\:{c}^{\mathrm{2}} +\frac{\left({b}+{a}−\mathrm{2}\sqrt{{ab}}\right){c}}{\mathrm{4}}={ab}+{c}^{\mathrm{2}} −\mathrm{2}{c}\sqrt{{ab}} \\ $$$$\Rightarrow\:\:{c}=\frac{{ab}}{\mathrm{2}\sqrt{{ab}}+\frac{{b}+{a}−\mathrm{2}\sqrt{{ab}}}{\mathrm{4}}} \\ $$$$\:\:\:\:\:{c}=\frac{\mathrm{4}{ab}}{{a}+{b}+\mathrm{6}\sqrt{{ab}}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com