Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 110227 by mohammad17 last updated on 27/Aug/20

Commented by mohammad17 last updated on 27/Aug/20

help me sir

$${help}\:{me}\:{sir} \\ $$

Answered by bobhans last updated on 28/Aug/20

(a) we obtain y= ±(√((1−x^3 )/(3x))) .  let ∅(x)=(√((1−x^3 )/(3x))) to see if it is an implicit  solution . Since (d∅/dx) = (((−6x^3 −3)(√(3x)))/(18x^2  (√(1−x^3 ))))  (d∅/dx) = −(((2x^3 +1)(√(3x)))/(6x^2 (√(1−x^3 )))) are defined on (0,1)  substituting them into diff eq yields  2xy(−(((2x^3 +1)(√(3x)))/(6x^2 (√(1−x^3 )))))+x^2 +y^2  =  2x((√((1−x^3 )/(3x))))(−(((2x^3 +1)(√(3x)))/(6x^2 (√(1−x^3 )))))+x^2 +((1−x^3 )/(3x))=  −(((2x^3 +1))/(3x))+((3x^3 +1−x^3 )/(3x)) = −(((2x^3 +1)/(3x)))+(((2x^3 +1)/(3x)))=0  so x^3 +3xy^2 =1 is an implicit solution

$$\left({a}\right)\:{we}\:{obtain}\:{y}=\:\pm\sqrt{\frac{\mathrm{1}−{x}^{\mathrm{3}} }{\mathrm{3}{x}}}\:. \\ $$$${let}\:\emptyset\left({x}\right)=\sqrt{\frac{\mathrm{1}−{x}^{\mathrm{3}} }{\mathrm{3}{x}}}\:{to}\:{see}\:{if}\:{it}\:{is}\:{an}\:{implicit} \\ $$$${solution}\:.\:{Since}\:\frac{{d}\emptyset}{{dx}}\:=\:\frac{\left(−\mathrm{6}{x}^{\mathrm{3}} −\mathrm{3}\right)\sqrt{\mathrm{3}{x}}}{\mathrm{18}{x}^{\mathrm{2}} \:\sqrt{\mathrm{1}−{x}^{\mathrm{3}} }} \\ $$$$\frac{{d}\emptyset}{{dx}}\:=\:−\frac{\left(\mathrm{2}{x}^{\mathrm{3}} +\mathrm{1}\right)\sqrt{\mathrm{3}{x}}}{\mathrm{6}{x}^{\mathrm{2}} \sqrt{\mathrm{1}−{x}^{\mathrm{3}} }}\:{are}\:{defined}\:{on}\:\left(\mathrm{0},\mathrm{1}\right) \\ $$$${substituting}\:{them}\:{into}\:{diff}\:{eq}\:{yields} \\ $$$$\mathrm{2}{xy}\left(−\frac{\left(\mathrm{2}{x}^{\mathrm{3}} +\mathrm{1}\right)\sqrt{\mathrm{3}{x}}}{\mathrm{6}{x}^{\mathrm{2}} \sqrt{\mathrm{1}−{x}^{\mathrm{3}} }}\right)+{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:= \\ $$$$\mathrm{2}{x}\left(\sqrt{\frac{\mathrm{1}−{x}^{\mathrm{3}} }{\mathrm{3}{x}}}\right)\left(−\frac{\left(\mathrm{2}{x}^{\mathrm{3}} +\mathrm{1}\right)\sqrt{\mathrm{3}{x}}}{\mathrm{6}{x}^{\mathrm{2}} \sqrt{\mathrm{1}−{x}^{\mathrm{3}} }}\right)+{x}^{\mathrm{2}} +\frac{\mathrm{1}−{x}^{\mathrm{3}} }{\mathrm{3}{x}}= \\ $$$$−\frac{\left(\mathrm{2}{x}^{\mathrm{3}} +\mathrm{1}\right)}{\mathrm{3}{x}}+\frac{\mathrm{3}{x}^{\mathrm{3}} +\mathrm{1}−{x}^{\mathrm{3}} }{\mathrm{3}{x}}\:=\:−\left(\frac{\mathrm{2}{x}^{\mathrm{3}} +\mathrm{1}}{\mathrm{3}{x}}\right)+\left(\frac{\mathrm{2}{x}^{\mathrm{3}} +\mathrm{1}}{\mathrm{3}{x}}\right)=\mathrm{0} \\ $$$${so}\:{x}^{\mathrm{3}} +\mathrm{3}{xy}^{\mathrm{2}} =\mathrm{1}\:{is}\:{an}\:{implicit}\:{solution} \\ $$$$ \\ $$

Commented by mohammad17 last updated on 28/Aug/20

thank you sir can you help me in (b)

$${thank}\:{you}\:{sir}\:{can}\:{you}\:{help}\:{me}\:{in}\:\left({b}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com