Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 107779 by ajfour last updated on 12/Aug/20

Commented by ajfour last updated on 12/Aug/20

y=(x−p)(x^3 −39x−70)  Find p.

$${y}=\left({x}−{p}\right)\left({x}^{\mathrm{3}} −\mathrm{39}{x}−\mathrm{70}\right) \\ $$$${Find}\:{p}. \\ $$

Commented by Sarah85 last updated on 12/Aug/20

impossible under given conditions  tangent through (−2∣0) and (((3p)/5)∣y) leads to  p=−((10)/3) ⇒ ((3p)/5)=−2 and the tangent is at  (−2∣0)

$$\mathrm{impossible}\:\mathrm{under}\:\mathrm{given}\:\mathrm{conditions} \\ $$$$\mathrm{tangent}\:\mathrm{through}\:\left(−\mathrm{2}\mid\mathrm{0}\right)\:\mathrm{and}\:\left(\frac{\mathrm{3}{p}}{\mathrm{5}}\mid{y}\right)\:\mathrm{leads}\:\mathrm{to} \\ $$$${p}=−\frac{\mathrm{10}}{\mathrm{3}}\:\Rightarrow\:\frac{\mathrm{3}{p}}{\mathrm{5}}=−\mathrm{2}\:\mathrm{and}\:\mathrm{the}\:\mathrm{tangent}\:\mathrm{is}\:\mathrm{at} \\ $$$$\left(−\mathrm{2}\mid\mathrm{0}\right) \\ $$

Commented by ajfour last updated on 13/Aug/20

thanks anyway..

$${thanks}\:{anyway}.. \\ $$

Answered by floor(10²Eta[1]) last updated on 13/Aug/20

((3p)/5)>7⇒p>((35)/3)≈11,6  y=(x−p)(x^3 −39x−70)  y=x^4 −39x^2 −70x−px^3 +39px+70p  y′=4x^3 −3px^2 −78x−70+39p  x=−2⇒y′=0⇒p=−2  but p>11

$$\frac{\mathrm{3p}}{\mathrm{5}}>\mathrm{7}\Rightarrow\mathrm{p}>\frac{\mathrm{35}}{\mathrm{3}}\approx\mathrm{11},\mathrm{6} \\ $$$$\mathrm{y}=\left(\mathrm{x}−\mathrm{p}\right)\left(\mathrm{x}^{\mathrm{3}} −\mathrm{39x}−\mathrm{70}\right) \\ $$$$\mathrm{y}=\mathrm{x}^{\mathrm{4}} −\mathrm{39x}^{\mathrm{2}} −\mathrm{70x}−\mathrm{px}^{\mathrm{3}} +\mathrm{39px}+\mathrm{70p} \\ $$$$\mathrm{y}'=\mathrm{4x}^{\mathrm{3}} −\mathrm{3px}^{\mathrm{2}} −\mathrm{78x}−\mathrm{70}+\mathrm{39p} \\ $$$$\mathrm{x}=−\mathrm{2}\Rightarrow\mathrm{y}'=\mathrm{0}\Rightarrow\mathrm{p}=−\mathrm{2} \\ $$$$\mathrm{but}\:\mathrm{p}>\mathrm{11}\: \\ $$$$ \\ $$

Commented by Sarah85 last updated on 13/Aug/20

that′s what I wrote before

$$\mathrm{that}'\mathrm{s}\:\mathrm{what}\:\mathrm{I}\:\mathrm{wrote}\:\mathrm{before} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com