Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 107673 by qwerty111 last updated on 12/Aug/20

Answered by Her_Majesty last updated on 12/Aug/20

=Σ_(k=1) ^n (2^(2k) +2^(−2k) +2)=Σ_(k=1) ^n 4^k +Σ_(k=1) ^n (1/4^k )+Σ_(k=1) ^n 2=  =((4^(n+1) −4)/3)+((4^n −1)/(3×4^n ))+2n=  =((4^(n+1) −4^(−n) )/3)+2n−1

$$=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\mathrm{2}^{\mathrm{2}{k}} +\mathrm{2}^{−\mathrm{2}{k}} +\mathrm{2}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{4}^{{k}} +\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{4}^{{k}} }+\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{2}= \\ $$$$=\frac{\mathrm{4}^{{n}+\mathrm{1}} −\mathrm{4}}{\mathrm{3}}+\frac{\mathrm{4}^{{n}} −\mathrm{1}}{\mathrm{3}×\mathrm{4}^{{n}} }+\mathrm{2}{n}= \\ $$$$=\frac{\mathrm{4}^{{n}+\mathrm{1}} −\mathrm{4}^{−{n}} }{\mathrm{3}}+\mathrm{2}{n}−\mathrm{1} \\ $$

Answered by Dwaipayan Shikari last updated on 12/Aug/20

(2^2 +4^2 +8^2 +...+n)+(2+2+2+..+n)+((1/4)+(1/(16))+(1/(64))+...n)  4.((4^n −1)/3)+2n+(1/4).((1−((1/4))^n )/(1−(1/4)))  4.((4^n −1)/3)+2n+((1−4^(−n) )/3)

$$\left(\mathrm{2}^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} +\mathrm{8}^{\mathrm{2}} +...+{n}\right)+\left(\mathrm{2}+\mathrm{2}+\mathrm{2}+..+{n}\right)+\left(\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{16}}+\frac{\mathrm{1}}{\mathrm{64}}+...{n}\right) \\ $$$$\mathrm{4}.\frac{\mathrm{4}^{{n}} −\mathrm{1}}{\mathrm{3}}+\mathrm{2}{n}+\frac{\mathrm{1}}{\mathrm{4}}.\frac{\mathrm{1}−\left(\frac{\mathrm{1}}{\mathrm{4}}\right)^{{n}} }{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}} \\ $$$$\mathrm{4}.\frac{\mathrm{4}^{{n}} −\mathrm{1}}{\mathrm{3}}+\mathrm{2}{n}+\frac{\mathrm{1}−\mathrm{4}^{−{n}} }{\mathrm{3}} \\ $$

Commented by Her_Majesty last updated on 12/Aug/20

yes now it′s the same as my solution

$${yes}\:{now}\:{it}'{s}\:{the}\:{same}\:{as}\:{my}\:{solution} \\ $$

Answered by 1549442205PVT last updated on 12/Aug/20

(2^n +(1/2^n ))^2 =4^n +2+(1/4^n ).Therefore,  Σ_(k=1) ^n (2^n +(1/2^n ))^2 =2n+Σ_(k=1) ^(n) 4^n +Σ_(k=1) ^(n) (1/4^n )  =4.((4^n −1)/(4−1))+(1/4).((1−((1/4))^n )/(1−(1/4)))=2n+(4/3)(4^n −1)  +(1/3)[1−((1/4))^n ]=2n−1+(4^(n+1) /3)−(1/(3.4^( n) ))

$$\left(\mathrm{2}^{\mathrm{n}} +\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}} }\right)^{\mathrm{2}} =\mathrm{4}^{\mathrm{n}} +\mathrm{2}+\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{n}} }.\mathrm{Therefore}, \\ $$$$\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\left(\mathrm{2}^{\mathrm{n}} +\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}} }\right)^{\mathrm{2}} =\mathrm{2n}+\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\Sigma}}\mathrm{4}^{\mathrm{n}} +\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\Sigma}}\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{n}} } \\ $$$$=\mathrm{4}.\frac{\mathrm{4}^{\mathrm{n}} −\mathrm{1}}{\mathrm{4}−\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{4}}.\frac{\mathrm{1}−\left(\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{n}} }{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}}=\mathrm{2n}+\frac{\mathrm{4}}{\mathrm{3}}\left(\mathrm{4}^{\mathrm{n}} −\mathrm{1}\right) \\ $$$$+\frac{\mathrm{1}}{\mathrm{3}}\left[\mathrm{1}−\left(\frac{\mathrm{1}}{\mathrm{4}}\right)^{\boldsymbol{\mathrm{n}}} \right]=\mathrm{2}\boldsymbol{\mathrm{n}}−\mathrm{1}+\frac{\mathrm{4}^{\boldsymbol{\mathrm{n}}+\mathrm{1}} }{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{3}.\mathrm{4}^{\:\boldsymbol{\mathrm{n}}} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com