Question Number 10612 by FilupS last updated on 20/Feb/17 | ||
Commented by FilupS last updated on 20/Feb/17 | ||
$$\mathrm{Solve}\:\mathrm{for}\:\boldsymbol{{A}}'\:\mathrm{and}\:\boldsymbol{{B}}'\:\mathrm{via}: \\ $$$$\mathrm{1}.\:\:\mathrm{Vectors} \\ $$$$\mathrm{2}.\:\:\mathrm{Triganometry} \\ $$ | ||
Answered by sandy_suhendra last updated on 20/Feb/17 | ||
$$\mathrm{by}\:\mathrm{trigonometry} \\ $$$$\mathrm{QA}=\mathrm{QA}'=\sqrt{\mathrm{1}^{\mathrm{2}} +\mathrm{0}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\mathrm{x}_{\mathrm{A}'} \:=\:\mathrm{1}\:\mathrm{cos}\:\theta\:=\:\mathrm{cos}\:\theta \\ $$$$\mathrm{y}_{\mathrm{A}'} \:=\:\mathrm{1}\:\mathrm{sin}\:\theta\:=\:\mathrm{sin}\:\theta \\ $$$$\mathrm{so}\:\mathrm{A}'\:=\:\begin{bmatrix}{\mathrm{cos}\:\theta}\\{\mathrm{sin}\:\theta}\end{bmatrix} \\ $$$$\mathrm{QB}=\mathrm{QB}'\:=\:\sqrt{\mathrm{0}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} }\:=\:\mathrm{2} \\ $$$$\mathrm{x}_{\mathrm{B}'} \:=\:\mathrm{2}\:\mathrm{cos}\:\left(\mathrm{90}°+\theta\right)\:=\:−\mathrm{2}\:\mathrm{sin}\:\theta \\ $$$$\mathrm{y}_{\mathrm{B}'} \:=\:\mathrm{2}\:\mathrm{sin}\:\left(\mathrm{90}°+\theta\right)\:=\:\mathrm{2}\:\mathrm{cos}\:\theta \\ $$$$\mathrm{so}\:\mathrm{B}'\:=\:\begin{bmatrix}{−\mathrm{2}\:\mathrm{sin}\:\theta}\\{\:\:\:\mathrm{2}\:\mathrm{cos}\:\theta}\end{bmatrix} \\ $$ | ||
Answered by mrW1 last updated on 21/Feb/17 | ||
$${by}\:{vectors}: \\ $$$$ \\ $$$$\overset{\rightarrow} {{QA}}=\mathrm{1}{i}+\mathrm{0}{j} \\ $$$$\overset{\rightarrow} {{AA}'}=−\left(\mathrm{1sin}\:\theta\mathrm{tan}\:\frac{\theta}{\mathrm{2}}\right){i}+\mathrm{1sin}\:\theta{j} \\ $$$$\overset{\rightarrow} {{QA}'}=\overset{\rightarrow} {{QA}}+\overset{\rightarrow} {{AA}'}=\left(\mathrm{1}−\mathrm{1sin}\:\theta\mathrm{tan}\:\frac{\theta}{\mathrm{2}}\right){i}+\left(\mathrm{0}+\mathrm{1sin}\:\theta\right){j}=\mathrm{1cos}\:\theta{i}+\mathrm{1sin}\:\theta{j} \\ $$$$ \\ $$$$\Rightarrow{x}_{{A}'} =\mathrm{cos}\:\theta \\ $$$$\Rightarrow{y}_{{A}'} =\mathrm{sin}\:\theta \\ $$$$ \\ $$$$\overset{\rightarrow} {{QB}}=\mathrm{0}{i}+\mathrm{2}{j} \\ $$$$\overset{\rightarrow} {{BB}'}=−\mathrm{2sin}\:\theta{i}−\left(\mathrm{2sin}\:\:\theta\mathrm{tan}\:\frac{\theta}{\mathrm{2}}\right){j} \\ $$$$\overset{\rightarrow} {{QB}'}=\overset{\rightarrow} {{QB}}+\overset{\rightarrow} {{BB}'}=\left(\mathrm{0}−\mathrm{2sin}\:\theta\right){i}+\left(\mathrm{2}−\mathrm{2sin}\:\:\theta\mathrm{tan}\:\frac{\theta}{\mathrm{2}}\right){j}=−\mathrm{2sin}\:\theta{i}+\mathrm{2cos}\:\theta{j} \\ $$$$ \\ $$$$\Rightarrow{x}_{{B}'} =−\mathrm{2sin}\:\theta \\ $$$$\Rightarrow{y}_{{B}'} =\mathrm{2cos}\:\theta \\ $$$$ \\ $$$${note}: \\ $$$$\mathrm{1}−\mathrm{sin}\:\theta\mathrm{tan}\:\frac{\theta}{\mathrm{2}}=\mathrm{1}−\mathrm{2sin}\:\frac{\theta}{\mathrm{2}}\mathrm{cos}\:\frac{\theta}{\mathrm{2}}\mathrm{tan}\:\frac{\theta}{\mathrm{2}}=\mathrm{1}−\mathrm{2sin}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}=\mathrm{cos}\:\theta \\ $$ | ||