Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 102313 by bemath last updated on 08/Jul/20

Answered by 1549442205 last updated on 08/Jul/20

The abscissa  of  intersection point of the curve   y=(4/(√x))−(4/x) and x−axis  being the root of the eqs.(4/(√x))−(4/x)=0  ⇔x−(√x)=0(x≠0)⇔x=1.Hence,  S=∫_0 ^1 e^(1−(1/4)x) dx+∫_1 ^4 [e^(1−(1/4)x) −((4/(√x))−(4/x))]dx  ∫_0 ^4 e^(1−(1/4)x) dx+∫_1 ^4 (4/x)dx−∫_1 ^4 (4/(√x))dx  =−4e^(1−(1/4)x) ∣_0 ^4 +4lnx∣_1 ^4 −8(√(x )) ∣_1 ^4   =−4−(−4e)+4(ln4−0)−8(2−1)  =4e+8ln2−12

$$\mathrm{The}\:\mathrm{abscissa}\:\:\mathrm{of}\:\:\mathrm{intersection}\:\mathrm{point}\:\mathrm{of}\:\mathrm{the}\:\mathrm{curve}\: \\ $$$$\mathrm{y}=\frac{\mathrm{4}}{\sqrt{\mathrm{x}}}−\frac{\mathrm{4}}{\mathrm{x}}\:\mathrm{and}\:\mathrm{x}−\mathrm{axis}\:\:\mathrm{being}\:\mathrm{the}\:\mathrm{root}\:\mathrm{of}\:\mathrm{the}\:\mathrm{eqs}.\frac{\mathrm{4}}{\sqrt{\mathrm{x}}}−\frac{\mathrm{4}}{\mathrm{x}}=\mathrm{0} \\ $$$$\Leftrightarrow\mathrm{x}−\sqrt{\mathrm{x}}=\mathrm{0}\left(\mathrm{x}\neq\mathrm{0}\right)\Leftrightarrow\mathrm{x}=\mathrm{1}.\mathrm{Hence}, \\ $$$$\mathrm{S}=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{e}^{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{x}} \mathrm{dx}+\int_{\mathrm{1}} ^{\mathrm{4}} \left[\mathrm{e}^{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{x}} −\left(\frac{\mathrm{4}}{\sqrt{\mathrm{x}}}−\frac{\mathrm{4}}{\mathrm{x}}\right)\right]\mathrm{dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{4}} \mathrm{e}^{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{x}} \mathrm{dx}+\int_{\mathrm{1}} ^{\mathrm{4}} \frac{\mathrm{4}}{\mathrm{x}}\mathrm{dx}−\int_{\mathrm{1}} ^{\mathrm{4}} \frac{\mathrm{4}}{\sqrt{\mathrm{x}}}\mathrm{dx} \\ $$$$=−\mathrm{4e}^{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{x}} \mid_{\mathrm{0}} ^{\mathrm{4}} +\mathrm{4lnx}\mid_{\mathrm{1}} ^{\mathrm{4}} −\mathrm{8}\sqrt{\mathrm{x}\:}\:\overset{\mathrm{4}} {\mid}_{\mathrm{1}} \\ $$$$=−\mathrm{4}−\left(−\mathrm{4e}\right)+\mathrm{4}\left(\mathrm{ln4}−\mathrm{0}\right)−\mathrm{8}\left(\mathrm{2}−\mathrm{1}\right) \\ $$$$=\mathrm{4e}+\mathrm{8ln2}−\mathrm{12} \\ $$

Commented by I want to learn more last updated on 08/Jul/20

Thanks sir

$$\mathrm{Thanks}\:\mathrm{sir} \\ $$

Answered by bemath last updated on 08/Jul/20

i got   Area = ∫_0 ^4 e^(1−(x/4))  dx −∫_1 ^4 (4x^(−1/2) −4x^(−1) )dx  = −4∫_0 ^4 e^(1−(x/4))  d(1−(x/4))−{8(√x)−4ln(x)}_1 ^4   =−4{e^(1−(x/4)) }_0 ^4 −{(16−4ln(4)−8}  =−4(1−e)+4ln(4)−8  =4e + 4ln(4)−12  ≈ 4.4183

$${i}\:{got}\: \\ $$$${Area}\:=\:\underset{\mathrm{0}} {\overset{\mathrm{4}} {\int}}{e}^{\mathrm{1}−\frac{{x}}{\mathrm{4}}} \:{dx}\:−\underset{\mathrm{1}} {\overset{\mathrm{4}} {\int}}\left(\mathrm{4}{x}^{−\mathrm{1}/\mathrm{2}} −\mathrm{4}{x}^{−\mathrm{1}} \right){dx} \\ $$$$=\:−\mathrm{4}\underset{\mathrm{0}} {\overset{\mathrm{4}} {\int}}{e}^{\mathrm{1}−\frac{{x}}{\mathrm{4}}} \:{d}\left(\mathrm{1}−\frac{{x}}{\mathrm{4}}\right)−\left\{\mathrm{8}\sqrt{{x}}−\mathrm{4ln}\left({x}\right)\right\}_{\mathrm{1}} ^{\mathrm{4}} \\ $$$$=−\mathrm{4}\left\{{e}^{\mathrm{1}−\frac{{x}}{\mathrm{4}}} \right\}_{\mathrm{0}} ^{\mathrm{4}} −\left\{\left(\mathrm{16}−\mathrm{4ln}\left(\mathrm{4}\right)−\mathrm{8}\right\}\right. \\ $$$$=−\mathrm{4}\left(\mathrm{1}−\mathrm{e}\right)+\mathrm{4ln}\left(\mathrm{4}\right)−\mathrm{8} \\ $$$$=\mathrm{4e}\:+\:\mathrm{4ln}\left(\mathrm{4}\right)−\mathrm{12} \\ $$$$\approx\:\mathrm{4}.\mathrm{4183}\: \\ $$

Commented by I want to learn more last updated on 08/Jul/20

Thanks sir

$$\mathrm{Thanks}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com