Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 101062 by bemath last updated on 30/Jun/20

Answered by MJS last updated on 30/Jun/20

after “many times” implies that  p=((10)/(25))=(2/5)±0  ⇒ there are ((25)/p)=62.5≈60 candies in the jar

$$\mathrm{after}\:``\mathrm{many}\:\mathrm{times}''\:\mathrm{implies}\:\mathrm{that} \\ $$$${p}=\frac{\mathrm{10}}{\mathrm{25}}=\frac{\mathrm{2}}{\mathrm{5}}\pm\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{there}\:\mathrm{are}\:\frac{\mathrm{25}}{{p}}=\mathrm{62}.\mathrm{5}\approx\mathrm{60}\:\mathrm{candies}\:\mathrm{in}\:\mathrm{the}\:\mathrm{jar} \\ $$

Commented by bemath last updated on 30/Jun/20

sir why (2/5) ± 0 ?

$$\mathrm{sir}\:\mathrm{why}\:\frac{\mathrm{2}}{\mathrm{5}}\:\pm\:\mathrm{0}\:?\: \\ $$

Commented by bemath last updated on 30/Jun/20

how sir get 62.5 ?

$$\mathrm{how}\:\mathrm{sir}\:\mathrm{get}\:\mathrm{62}.\mathrm{5}\:? \\ $$

Commented by bemath last updated on 30/Jun/20

((25)/(((2/5)))) = ((125)/2) = 62.5 ≈ 60

$$\frac{\mathrm{25}}{\left(\frac{\mathrm{2}}{\mathrm{5}}\right)}\:=\:\frac{\mathrm{125}}{\mathrm{2}}\:=\:\mathrm{62}.\mathrm{5}\:\approx\:\mathrm{60} \\ $$

Commented by MJS last updated on 30/Jun/20

if we do not know the probability and we  make one test as described here, we get a  normally distributed p. we then have to  define a confidence interval. usually you  want to be at least 95% sure that the  probability lies within [p−ε; p+ε]  you′ll have to study this.  but after “many tests” means we are 100%  sure the probability is (2/5). then it′s easy:  we marked 25  if we take out 25 we get 10 marked  we must take out 2.5×25 to get 2.5×10 marked  2.5×25=62.5

$$\mathrm{if}\:\mathrm{we}\:\mathrm{do}\:\mathrm{not}\:\mathrm{know}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{and}\:\mathrm{we} \\ $$$$\mathrm{make}\:\mathrm{one}\:\mathrm{test}\:\mathrm{as}\:\mathrm{described}\:\mathrm{here},\:\mathrm{we}\:\mathrm{get}\:\mathrm{a} \\ $$$$\mathrm{normally}\:\mathrm{distributed}\:{p}.\:\mathrm{we}\:\mathrm{then}\:\mathrm{have}\:\mathrm{to} \\ $$$$\mathrm{define}\:\mathrm{a}\:\mathrm{confidence}\:\mathrm{interval}.\:\mathrm{usually}\:\mathrm{you} \\ $$$$\mathrm{want}\:\mathrm{to}\:\mathrm{be}\:\mathrm{at}\:\mathrm{least}\:\mathrm{95\%}\:\mathrm{sure}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{probability}\:\mathrm{lies}\:\mathrm{within}\:\left[{p}−\epsilon;\:{p}+\epsilon\right] \\ $$$$\mathrm{you}'\mathrm{ll}\:\mathrm{have}\:\mathrm{to}\:\mathrm{study}\:\mathrm{this}. \\ $$$$\mathrm{but}\:\mathrm{after}\:``\mathrm{many}\:\mathrm{tests}''\:\mathrm{means}\:\mathrm{we}\:\mathrm{are}\:\mathrm{100\%} \\ $$$$\mathrm{sure}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{is}\:\frac{\mathrm{2}}{\mathrm{5}}.\:\mathrm{then}\:\mathrm{it}'\mathrm{s}\:\mathrm{easy}: \\ $$$$\mathrm{we}\:\mathrm{marked}\:\mathrm{25} \\ $$$$\mathrm{if}\:\mathrm{we}\:\mathrm{take}\:\mathrm{out}\:\mathrm{25}\:\mathrm{we}\:\mathrm{get}\:\mathrm{10}\:\mathrm{marked} \\ $$$$\mathrm{we}\:\mathrm{must}\:\mathrm{take}\:\mathrm{out}\:\mathrm{2}.\mathrm{5}×\mathrm{25}\:\mathrm{to}\:\mathrm{get}\:\mathrm{2}.\mathrm{5}×\mathrm{10}\:\mathrm{marked} \\ $$$$\mathrm{2}.\mathrm{5}×\mathrm{25}=\mathrm{62}.\mathrm{5} \\ $$

Commented by bemath last updated on 30/Jun/20

thank you sir for your explanation

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}\:\mathrm{for}\:\mathrm{your}\:\mathrm{explanation} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com