Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 100597 by bobhans last updated on 27/Jun/20

Commented by Dwaipayan Shikari last updated on 27/Jun/20

x+2∣y∣=3  First case    x+2y=3                             x−3y=5   ⇒5y=−2  ⇒y=−(2/5)    x=((19)/5)  x−y=((21)/5)       { ((x=((19)/5))),((y=−(2/5))) :}  Second case  x−2y=3  and   x−3y=5   ⇒y=−2   and   x=−1  so    x−y=1    { ((x=−1)),((y=−2)) :}

$${x}+\mathrm{2}\mid{y}\mid=\mathrm{3} \\ $$$${First}\:{case}\:\:\:\:{x}+\mathrm{2}{y}=\mathrm{3} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}−\mathrm{3}{y}=\mathrm{5}\:\:\:\Rightarrow\mathrm{5}{y}=−\mathrm{2}\:\:\Rightarrow{y}=−\frac{\mathrm{2}}{\mathrm{5}}\:\:\:\:{x}=\frac{\mathrm{19}}{\mathrm{5}} \\ $$$${x}−{y}=\frac{\mathrm{21}}{\mathrm{5}}\:\:\:\:\:\:\begin{cases}{{x}=\frac{\mathrm{19}}{\mathrm{5}}}\\{{y}=−\frac{\mathrm{2}}{\mathrm{5}}}\end{cases} \\ $$$${Second}\:{case} \\ $$$${x}−\mathrm{2}{y}=\mathrm{3}\:\:{and}\:\:\:{x}−\mathrm{3}{y}=\mathrm{5}\:\:\:\Rightarrow{y}=−\mathrm{2}\:\:\:{and}\:\:\:{x}=−\mathrm{1} \\ $$$${so}\:\:\:\:{x}−{y}=\mathrm{1}\:\:\:\begin{cases}{{x}=−\mathrm{1}}\\{{y}=−\mathrm{2}}\end{cases} \\ $$

Answered by mathmax by abdo last updated on 27/Jun/20

 { ((x+2∣y∣=3)),((x−3y =5   ⇒2∣y∣+3y =−2 and x =5+3y)) :}  case1  y≥0 ⇒5y =−2 ⇒y =−(2/5) ⇒x =5−(6/5) =−((19)/5) so  x−y =−((19)/5) +(2/5) =−((17)/5)  case 2 y≤0 ⇒y =−2 ⇒x =5−6 =−1 so x−y =−1+2 =1

$$\begin{cases}{\mathrm{x}+\mathrm{2}\mid\mathrm{y}\mid=\mathrm{3}}\\{\mathrm{x}−\mathrm{3y}\:=\mathrm{5}\:\:\:\Rightarrow\mathrm{2}\mid\mathrm{y}\mid+\mathrm{3y}\:=−\mathrm{2}\:\mathrm{and}\:\mathrm{x}\:=\mathrm{5}+\mathrm{3y}}\end{cases} \\ $$$$\mathrm{case1}\:\:\mathrm{y}\geqslant\mathrm{0}\:\Rightarrow\mathrm{5y}\:=−\mathrm{2}\:\Rightarrow\mathrm{y}\:=−\frac{\mathrm{2}}{\mathrm{5}}\:\Rightarrow\mathrm{x}\:=\mathrm{5}−\frac{\mathrm{6}}{\mathrm{5}}\:=−\frac{\mathrm{19}}{\mathrm{5}}\:\mathrm{so} \\ $$$$\mathrm{x}−\mathrm{y}\:=−\frac{\mathrm{19}}{\mathrm{5}}\:+\frac{\mathrm{2}}{\mathrm{5}}\:=−\frac{\mathrm{17}}{\mathrm{5}} \\ $$$$\mathrm{case}\:\mathrm{2}\:\mathrm{y}\leqslant\mathrm{0}\:\Rightarrow\mathrm{y}\:=−\mathrm{2}\:\Rightarrow\mathrm{x}\:=\mathrm{5}−\mathrm{6}\:=−\mathrm{1}\:\mathrm{so}\:\mathrm{x}−\mathrm{y}\:=−\mathrm{1}+\mathrm{2}\:=\mathrm{1} \\ $$

Commented by Rasheed.Sindhi last updated on 27/Jun/20

I think sir that:  In case 1 if y≥0 then y=−(2/5) is  discardable  and for that x=−((19)/5)  is also discardable.

$$\mathrm{I}\:\mathrm{think}\:\mathrm{sir}\:\mathrm{that}: \\ $$$$\mathrm{In}\:\mathrm{case}\:\mathrm{1}\:\mathrm{if}\:\mathrm{y}\geqslant\mathrm{0}\:\mathrm{then}\:\mathrm{y}=−\frac{\mathrm{2}}{\mathrm{5}}\:\mathrm{is} \\ $$$$\mathrm{discardable}\:\:\mathrm{and}\:\mathrm{for}\:\mathrm{that}\:\mathrm{x}=−\frac{\mathrm{19}}{\mathrm{5}} \\ $$$$\mathrm{is}\:\mathrm{also}\:\mathrm{discardable}. \\ $$

Answered by john santu last updated on 27/Jun/20

∣y∣ = ((3−x)/2) ⇒ y = ± (((3−x)/2))  y = ((x−5)/3) ⇒± (((3−x)/2)) = ((x−5)/3)  ± (9−3x) = 2x−10   { ((9−3x = 2x−10 ; x = ((19)/5))),((3x−9 = 2x−10 ; x = −1 )) :}   { ((y=((((19)/5) −5)/3) = ((−2)/5))),((y=((−6)/2) = −2)) :}

$$\mid\mathrm{y}\mid\:=\:\frac{\mathrm{3}−{x}}{\mathrm{2}}\:\Rightarrow\:\mathrm{y}\:=\:\pm\:\left(\frac{\mathrm{3}−{x}}{\mathrm{2}}\right) \\ $$$${y}\:=\:\frac{{x}−\mathrm{5}}{\mathrm{3}}\:\Rightarrow\pm\:\left(\frac{\mathrm{3}−{x}}{\mathrm{2}}\right)\:=\:\frac{{x}−\mathrm{5}}{\mathrm{3}} \\ $$$$\pm\:\left(\mathrm{9}−\mathrm{3}{x}\right)\:=\:\mathrm{2}{x}−\mathrm{10} \\ $$$$\begin{cases}{\mathrm{9}−\mathrm{3}{x}\:=\:\mathrm{2}{x}−\mathrm{10}\:;\:{x}\:=\:\frac{\mathrm{19}}{\mathrm{5}}}\\{\mathrm{3x}−\mathrm{9}\:=\:\mathrm{2x}−\mathrm{10}\:;\:\mathrm{x}\:=\:−\mathrm{1}\:}\end{cases} \\ $$$$\begin{cases}{\mathrm{y}=\frac{\frac{\mathrm{19}}{\mathrm{5}}\:−\mathrm{5}}{\mathrm{3}}\:=\:\frac{−\mathrm{2}}{\mathrm{5}}}\\{\mathrm{y}=\frac{−\mathrm{6}}{\mathrm{2}}\:=\:−\mathrm{2}}\end{cases} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com