Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 100561 by DGmichael last updated on 27/Jun/20

Commented by bramlex last updated on 27/Jun/20

x−y = ((x^3 −y^3 )/(x^2 +xy+y^2 ))  x=((3+(√(9+((125)/(27)))) ))^(1/(3 ))  , y = ((−3+(√(9+((125)/(27))))))^(1/(3 ))   x−y = (6/((((3+(√(9+((125)/(27)))))^2 ))^(1/(3 )) +(((125)/(27)))^(1/(3  )) +(((−3+(√(9+((125)/(27)))))^2 ))^(1/(3  )) ))  = (6/((5/3)+((18+((125)/(27)) + 6(√(9+((125)/(27))))))^(1/(3 ))  +((18+((125)/(27))−6(√(9+((125)/(27))))))^(1/(3  )) ))

$${x}−{y}\:=\:\frac{{x}^{\mathrm{3}} −{y}^{\mathrm{3}} }{{x}^{\mathrm{2}} +{xy}+{y}^{\mathrm{2}} } \\ $$$${x}=\sqrt[{\mathrm{3}\:}]{\mathrm{3}+\sqrt{\mathrm{9}+\frac{\mathrm{125}}{\mathrm{27}}}\:}\:,\:{y}\:=\:\sqrt[{\mathrm{3}\:}]{−\mathrm{3}+\sqrt{\mathrm{9}+\frac{\mathrm{125}}{\mathrm{27}}}} \\ $$$${x}−{y}\:=\:\frac{\mathrm{6}}{\sqrt[{\mathrm{3}\:}]{\left(\mathrm{3}+\sqrt{\mathrm{9}+\frac{\mathrm{125}}{\mathrm{27}}}\right)^{\mathrm{2}} }+\sqrt[{\mathrm{3}\:\:}]{\frac{\mathrm{125}}{\mathrm{27}}}+\sqrt[{\mathrm{3}\:\:}]{\left(−\mathrm{3}+\sqrt{\mathrm{9}+\frac{\mathrm{125}}{\mathrm{27}}}\right)^{\mathrm{2}} }} \\ $$$$=\:\frac{\mathrm{6}}{\frac{\mathrm{5}}{\mathrm{3}}+\sqrt[{\mathrm{3}\:}]{\mathrm{18}+\frac{\mathrm{125}}{\mathrm{27}}\:+\:\mathrm{6}\sqrt{\mathrm{9}+\frac{\mathrm{125}}{\mathrm{27}}}}\:+\sqrt[{\mathrm{3}\:\:}]{\mathrm{18}+\frac{\mathrm{125}}{\mathrm{27}}−\mathrm{6}\sqrt{\mathrm{9}+\frac{\mathrm{125}}{\mathrm{27}}}}} \\ $$$$ \\ $$

Answered by MJS last updated on 27/Jun/20

A is the solution of A^3 +pA+q=0  Cardano  A=((−(q/2)+(√((q^2 /4)+(p^3 /(27))))))^(1/3) +((−(q/2)−(√((q^2 /4)+(p^3 /(27))))))^(1/3) =  =((−(q/2)+(√((q^2 /4)+(p^3 /(27))))))^(1/3) −(((q/2)+(√((q^2 /4)+(p^3 /(27))))))^(1/3)   (q/2)=3 ⇒ q=6  (q^2 /4)=9 ⇒ q=±6  ⇒ q=6  (p^3 /(27))=((125)/(27)) ⇒ p=5  A^3 +5A+6=0  ⇒ A_1 =−1∧A_(2, 3) =(1/2)±((√(23))/2)i  ⇒ A=A_1 =−1

$${A}\:\mathrm{is}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{of}\:{A}^{\mathrm{3}} +{pA}+{q}=\mathrm{0} \\ $$$$\mathrm{Cardano} \\ $$$${A}=\sqrt[{\mathrm{3}}]{−\frac{{q}}{\mathrm{2}}+\sqrt{\frac{{q}^{\mathrm{2}} }{\mathrm{4}}+\frac{{p}^{\mathrm{3}} }{\mathrm{27}}}}+\sqrt[{\mathrm{3}}]{−\frac{{q}}{\mathrm{2}}−\sqrt{\frac{{q}^{\mathrm{2}} }{\mathrm{4}}+\frac{{p}^{\mathrm{3}} }{\mathrm{27}}}}= \\ $$$$=\sqrt[{\mathrm{3}}]{−\frac{{q}}{\mathrm{2}}+\sqrt{\frac{{q}^{\mathrm{2}} }{\mathrm{4}}+\frac{{p}^{\mathrm{3}} }{\mathrm{27}}}}−\sqrt[{\mathrm{3}}]{\frac{{q}}{\mathrm{2}}+\sqrt{\frac{{q}^{\mathrm{2}} }{\mathrm{4}}+\frac{{p}^{\mathrm{3}} }{\mathrm{27}}}} \\ $$$$\frac{{q}}{\mathrm{2}}=\mathrm{3}\:\Rightarrow\:{q}=\mathrm{6} \\ $$$$\frac{{q}^{\mathrm{2}} }{\mathrm{4}}=\mathrm{9}\:\Rightarrow\:{q}=\pm\mathrm{6} \\ $$$$\Rightarrow\:{q}=\mathrm{6} \\ $$$$\frac{{p}^{\mathrm{3}} }{\mathrm{27}}=\frac{\mathrm{125}}{\mathrm{27}}\:\Rightarrow\:{p}=\mathrm{5} \\ $$$${A}^{\mathrm{3}} +\mathrm{5}{A}+\mathrm{6}=\mathrm{0} \\ $$$$\Rightarrow\:{A}_{\mathrm{1}} =−\mathrm{1}\wedge{A}_{\mathrm{2},\:\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{23}}}{\mathrm{2}}\mathrm{i} \\ $$$$\Rightarrow\:{A}={A}_{\mathrm{1}} =−\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com