Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 193871 by Mastermind last updated on 21/Jun/23

Ques. 8        Find the signum (sign or sgn) of the  permutation θ=(12345678).  Hint : for any permutation β, take  sgn β = {_(−1       if β is odd) ^(1            if β is even)       Ques. 9       Prove that ∣S_n ∣ = n!.    Ques. 10        Provd that for b∈S_n , sgn b = sgn b^(−1)  .

$$\mathrm{Ques}.\:\mathrm{8}\: \\ $$$$\:\:\:\:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{signum}\:\left(\mathrm{sign}\:\mathrm{or}\:\mathrm{sgn}\right)\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{permutation}\:\theta=\left(\mathrm{12345678}\right). \\ $$$$\mathrm{Hint}\::\:\mathrm{for}\:\mathrm{any}\:\mathrm{permutation}\:\beta,\:\mathrm{take} \\ $$$$\mathrm{sgn}\:\beta\:=\:\left\{_{−\mathrm{1}\:\:\:\:\:\:\:\mathrm{if}\:\beta\:\mathrm{is}\:\mathrm{odd}} ^{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{if}\:\beta\:\mathrm{is}\:\mathrm{even}} \right. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Ques}.\:\mathrm{9} \\ $$$$\:\:\:\:\:\mathrm{Prove}\:\mathrm{that}\:\mid\mathrm{S}_{\mathrm{n}} \mid\:=\:\mathrm{n}!. \\ $$$$ \\ $$$$\mathrm{Ques}.\:\mathrm{10} \\ $$$$\:\:\:\:\:\:\mathrm{Provd}\:\mathrm{that}\:\mathrm{for}\:\mathrm{b}\in\mathrm{S}_{\mathrm{n}} ,\:\mathrm{sgn}\:\mathrm{b}\:=\:\mathrm{sgn}\:\mathrm{b}^{−\mathrm{1}} \:. \\ $$

Commented by talminator2856792 last updated on 23/Jun/23

  what is source of these questions.      or book name.

$$\:\:\mathrm{what}\:\mathrm{is}\:\mathrm{source}\:\mathrm{of}\:\mathrm{these}\:\mathrm{questions}.\:\: \\ $$$$\:\:\mathrm{or}\:\mathrm{book}\:\mathrm{name}. \\ $$

Answered by Rajpurohith last updated on 22/Jun/23

(8) Clearly θ=(18)(17)(16)(15)(14)(13)(12)  which shows θ is an odd permutation.  hence sgn(θ)=−1.   ■  (9) S_n  denotes the set of all permutations of  a set of n elements say A={1,2,3,...n}.  [you know that S_n  forms  a group under function composition.]  let σ∈S_n  , so σ is a bijection.  How many choices do you have for σ(1)?  You have n choices.  And for σ(2)?  It must be (n−1) choices.  because you cannot choose the one you choosed  for σ(1).  [Suppose you choose σ(2)=σ(1) ,  ⇒2=1 as σ is bijective.]  so you cannot.  similarly there are (n−2) choices for σ(3).  .  .  .  There are 2 choices for σ(n−1)  And only one choice for σ(n).  By fundamental principle of counting,  we have n(n−1)(n−2)...2.1=n! such permutations  on n letters and they are the only permutations.  ⇒∣S_n ∣=n!        ■    (10)Let β∈S_n . Suppose β is even .  ⇒βoβ^(−1) =Id  ⇒sgn(βoβ^(−1) )=sgn(Id)=1  Suppose β^(−1 ) is odd   ⇒βoβ^(−1)  is odd ⇒sgn(βoβ^(−1) )=−1, a contradiction.  Hence β^(−1 )  is not odd  ⇒β^(−1)  must be even.  ⇒sgn(β^(−1) )=1=sgn(β)     Similar argument for odd.      ■

$$\left(\mathrm{8}\right)\:{Clearly}\:\theta=\left(\mathrm{18}\right)\left(\mathrm{17}\right)\left(\mathrm{16}\right)\left(\mathrm{15}\right)\left(\mathrm{14}\right)\left(\mathrm{13}\right)\left(\mathrm{12}\right) \\ $$$${which}\:{shows}\:\theta\:{is}\:{an}\:\boldsymbol{{odd}}\:{permutation}. \\ $$$${hence}\:{sgn}\left(\theta\right)=−\mathrm{1}.\:\:\:\blacksquare \\ $$$$\left(\mathrm{9}\right)\:{S}_{{n}} \:{denotes}\:{the}\:{set}\:{of}\:{all}\:{permutations}\:{of} \\ $$$${a}\:{set}\:{of}\:{n}\:{elements}\:{say}\:{A}=\left\{\mathrm{1},\mathrm{2},\mathrm{3},...{n}\right\}. \\ $$$$\left[{you}\:{know}\:{that}\:{S}_{{n}} \:{forms}\right. \\ $$$$\left.{a}\:{group}\:{under}\:{function}\:{composition}.\right] \\ $$$${let}\:\sigma\in{S}_{{n}} \:,\:{so}\:\sigma\:{is}\:{a}\:{bijection}. \\ $$$${How}\:{many}\:{choices}\:{do}\:{you}\:{have}\:{for}\:\sigma\left(\mathrm{1}\right)? \\ $$$$\boldsymbol{{You}}\:\boldsymbol{{have}}\:\boldsymbol{{n}}\:\boldsymbol{{choices}}. \\ $$$${And}\:{for}\:\sigma\left(\mathrm{2}\right)? \\ $$$$\boldsymbol{{It}}\:\boldsymbol{{must}}\:\boldsymbol{{be}}\:\left(\boldsymbol{{n}}−\mathrm{1}\right)\:\boldsymbol{{choices}}. \\ $$$${because}\:{you}\:{cannot}\:{choose}\:{the}\:{one}\:{you}\:{choosed} \\ $$$${for}\:\sigma\left(\mathrm{1}\right). \\ $$$$\left[{Suppose}\:{you}\:{choose}\:\sigma\left(\mathrm{2}\right)=\sigma\left(\mathrm{1}\right)\:,\right. \\ $$$$\left.\Rightarrow\mathrm{2}=\mathrm{1}\:{as}\:\sigma\:{is}\:{bijective}.\right] \\ $$$${so}\:{you}\:{cannot}. \\ $$$${similarly}\:{there}\:{are}\:\left({n}−\mathrm{2}\right)\:{choices}\:{for}\:\sigma\left(\mathrm{3}\right). \\ $$$$. \\ $$$$. \\ $$$$. \\ $$$${There}\:{are}\:\mathrm{2}\:{choices}\:{for}\:\sigma\left({n}−\mathrm{1}\right) \\ $$$${And}\:{only}\:{one}\:{choice}\:{for}\:\sigma\left({n}\right). \\ $$$${By}\:{fundamental}\:{principle}\:{of}\:{counting}, \\ $$$${we}\:{have}\:{n}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)...\mathrm{2}.\mathrm{1}=\boldsymbol{{n}}!\:{such}\:{permutations} \\ $$$${on}\:{n}\:{letters}\:{and}\:{they}\:{are}\:{the}\:{only}\:{permutations}. \\ $$$$\Rightarrow\mid\boldsymbol{{S}}_{\boldsymbol{{n}}} \mid=\boldsymbol{{n}}!\:\:\:\:\:\:\:\:\blacksquare \\ $$$$ \\ $$$$\left(\mathrm{10}\right){Let}\:\beta\in{S}_{{n}} .\:{Suppose}\:\beta\:{is}\:{even}\:. \\ $$$$\Rightarrow\beta{o}\beta^{−\mathrm{1}} ={Id} \\ $$$$\Rightarrow{sgn}\left(\beta{o}\beta^{−\mathrm{1}} \right)={sgn}\left({Id}\right)=\mathrm{1} \\ $$$${Suppose}\:\beta^{−\mathrm{1}\:} {is}\:{odd}\: \\ $$$$\Rightarrow\beta{o}\beta^{−\mathrm{1}} \:{is}\:{odd}\:\Rightarrow{sgn}\left(\beta{o}\beta^{−\mathrm{1}} \right)=−\mathrm{1},\:{a}\:{contradiction}. \\ $$$${Hence}\:\beta^{−\mathrm{1}\:} \:{is}\:{not}\:{odd} \\ $$$$\Rightarrow\beta^{−\mathrm{1}} \:{must}\:{be}\:{even}. \\ $$$$\Rightarrow{sgn}\left(\beta^{−\mathrm{1}} \right)=\mathrm{1}={sgn}\left(\beta\right)\:\:\: \\ $$$${Similar}\:{argument}\:{for}\:{odd}.\:\:\:\:\:\:\blacksquare \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by Mastermind last updated on 22/Jun/23

Thank you so much

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much} \\ $$

Commented by York12 last updated on 22/Jun/23

sir I am facing a lot of problems with combinatorics  what do you recommend to read

$${sir}\:{I}\:{am}\:{facing}\:{a}\:{lot}\:{of}\:{problems}\:{with}\:{combinatorics} \\ $$$${what}\:{do}\:{you}\:{recommend}\:{to}\:{read} \\ $$

Commented by Rajpurohith last updated on 22/Jun/23

I would better suggest you to study  one book properly as a course.

$$\boldsymbol{{I}}\:\boldsymbol{{would}}\:\boldsymbol{{better}}\:\boldsymbol{{suggest}}\:\boldsymbol{{you}}\:\boldsymbol{{to}}\:\boldsymbol{{study}} \\ $$$$\boldsymbol{{one}}\:\boldsymbol{{book}}\:\boldsymbol{{properly}}\:\boldsymbol{{as}}\:\boldsymbol{{a}}\:\boldsymbol{{course}}. \\ $$

Commented by talminator2856792 last updated on 23/Jun/23

  what book do you recommend.

$$\:\:\mathrm{what}\:\mathrm{book}\:\mathrm{do}\:\mathrm{you}\:\mathrm{recommend}.\:\: \\ $$

Commented by York12 last updated on 23/Jun/23

what book do you recommend sir

$${what}\:{book}\:{do}\:{you}\:{recommend}\:{sir} \\ $$$$ \\ $$

Commented by Rajpurohith last updated on 24/Jun/23

Actually I did not have a course in it,  But I ′d suggest the book “Introductory  Combinatorics” by Richard .A Brualdi.

$$\boldsymbol{{Actually}}\:\boldsymbol{{I}}\:\boldsymbol{{did}}\:\boldsymbol{{not}}\:\boldsymbol{{have}}\:\boldsymbol{{a}}\:\boldsymbol{{course}}\:\boldsymbol{{in}}\:\boldsymbol{{it}}, \\ $$$$\boldsymbol{{But}}\:\boldsymbol{{I}}\:'\boldsymbol{{d}}\:\boldsymbol{{suggest}}\:\boldsymbol{{the}}\:\boldsymbol{{book}}\:``\boldsymbol{{Introductory}} \\ $$$$\boldsymbol{{Combinatorics}}''\:\boldsymbol{{by}}\:\boldsymbol{{Richard}}\:.\boldsymbol{{A}}\:\boldsymbol{{Brualdi}}. \\ $$

Commented by York12 last updated on 23/Jul/23

thanks

$${thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com