Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 191512 by mnjuly1970 last updated on 25/Apr/23

       Q:       the equation            ⌊ cos(4x )⌋=m.cos(2x)     has no  solution .  x∈ (0, (π/2) )      find the acceptable         real values for    ”m”.

$$ \\ $$$$\:\:\:\:\:{Q}:\:\:\:\:\:\:\:{the}\:{equation}\: \\ $$$$\:\:\:\: \\ $$$$\:\:\:\lfloor\:\mathrm{cos}\left(\mathrm{4}{x}\:\right)\rfloor={m}.\mathrm{cos}\left(\mathrm{2}{x}\right) \\ $$$$\:\:\:{has}\:{no}\:\:{solution}\:.\:\:{x}\in\:\left(\mathrm{0},\:\frac{\pi}{\mathrm{2}}\:\right) \\ $$$$\:\:\:\:{find}\:{the}\:{acceptable} \\ $$$$\:\:\:\:\:\:\:{real}\:{values}\:{for}\:\:\:\:''{m}''. \\ $$

Answered by mahdipoor last updated on 26/Apr/23

[cos(4x)]=0,1,−1  ⇒^(no answer)    mcos(2x)≠0,1,−1  m≠((0,1,−1)/(cos(2x)))   ⇒^(1<cosx<−1)    m≠0,R−(−1,−1)  ⇒⇒m=[−1,1]

$$\left[{cos}\left(\mathrm{4}{x}\right)\right]=\mathrm{0},\mathrm{1},−\mathrm{1}\:\:\overset{{no}\:{answer}} {\Rightarrow}\:\:\:{mcos}\left(\mathrm{2}{x}\right)\neq\mathrm{0},\mathrm{1},−\mathrm{1} \\ $$$${m}\neq\frac{\mathrm{0},\mathrm{1},−\mathrm{1}}{{cos}\left(\mathrm{2}{x}\right)}\:\:\:\overset{\mathrm{1}<{cosx}<−\mathrm{1}} {\Rightarrow}\:\:\:{m}\neq\mathrm{0},{R}−\left(−\mathrm{1},−\mathrm{1}\right) \\ $$$$\Rightarrow\Rightarrow{m}=\left[−\mathrm{1},\mathrm{1}\right] \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com