Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 78358 by aliesam last updated on 16/Jan/20

Q. solve    (2^(sin^2 (x)) /(sin^2 (x) )) + (3^(cos^2 (x)) /(cos^2 (x))) = 6

$${Q}.\:{solve} \\ $$$$ \\ $$$$\frac{\mathrm{2}^{{sin}^{\mathrm{2}} \left({x}\right)} }{{sin}^{\mathrm{2}} \left({x}\right)\:}\:+\:\frac{\mathrm{3}^{{cos}^{\mathrm{2}} \left({x}\right)} }{{cos}^{\mathrm{2}} \left({x}\right)}\:=\:\mathrm{6} \\ $$

Commented by MJS last updated on 16/Jan/20

the minimum of the lhs is 2((√3)+(√2))>6 at  x=(π/4)+(π/2)n ⇒ no solution ∈R

$$\mathrm{the}\:\mathrm{minimum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{lhs}\:\mathrm{is}\:\mathrm{2}\left(\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}}\right)>\mathrm{6}\:\mathrm{at} \\ $$$${x}=\frac{\pi}{\mathrm{4}}+\frac{\pi}{\mathrm{2}}{n}\:\Rightarrow\:\mathrm{no}\:\mathrm{solution}\:\in\mathbb{R} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com