Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 212935 by MrGaster last updated on 27/Oct/24

                          Proving :             ∣∫_0 ^1 f(x)dx−((f(0)+f(1))/2)∣≤(1/(32))

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Proving}\:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mid\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx}−\frac{{f}\left(\mathrm{0}\right)+{f}\left(\mathrm{1}\right)}{\mathrm{2}}\mid\leqslant\frac{\mathrm{1}}{\mathrm{32}} \\ $$$$ \\ $$

Answered by mehdee7396 last updated on 27/Oct/24

for example f(x)=x^2 ⇒∫_0 ^1 f(x)dx=(1/3)  ⇒∣∫_0 ^1 f(x)dx−((f(0)+f(1))/2)∣=(1/6)≰(1/(32)) ?

$${for}\:{example}\:{f}\left({x}\right)={x}^{\mathrm{2}} \Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\Rightarrow\mid\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx}−\frac{{f}\left(\mathrm{0}\right)+{f}\left(\mathrm{1}\right)}{\mathrm{2}}\mid=\frac{\mathrm{1}}{\mathrm{6}}\nleqslant\frac{\mathrm{1}}{\mathrm{32}}\:? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com