Question Number 216830 by MrGaster last updated on 22/Feb/25 | ||
![]() | ||
$$\mathrm{Prove}:\forall{x}\in\mathbb{R},\mid\mathrm{cos}\:{x}\mid+\mid\mathrm{cos}\:\mathrm{2}{x}\mid+\ldots+\mid\mathrm{cos}\:{nx}\mid\geq\frac{{n}−\mathrm{1}}{\mathrm{2}}\left({n}\in\mathbb{Z}_{>\mathrm{0}} \right)\:\: \\ $$ | ||
Commented by MathematicalUser2357 last updated on 25/Feb/25 | ||
![]() | ||
$$\mathrm{Or}\:\mathrm{you}\:\mathrm{could}\:\mathrm{do}\:\left\{{n}\mid{n}\in\mathbb{Z}\wedge{n}>\mathrm{0}\right\}\:\left(\mathrm{or}\:\left\{{n}\mid{n}\in\mathbb{N}\right\}\right) \\ $$ | ||
Answered by MrGaster last updated on 23/Feb/25 | ||
![]() | ||
$$\mathrm{Prove}:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\mid\mathrm{cos}\left({k}\pi\right)\mid\geq\frac{{n}−\mathrm{1}}{\mathrm{2}}\:\left({n}\:\in\:\mathbb{Z}_{>\mathrm{0}} \right) \\ $$$$\mathrm{Let}\:{S}_{{n}} \left({x}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\mid\mathrm{cos}\left({kx}\right)\mid \\ $$$$\Rightarrow{S}_{{n}} \left({x}\right)=\mid\mathrm{cos}\left({x}\right)\mid+\mid\mathrm{cos}\left(\mathrm{2}{x}\right)\mid+\ldots+\mid\mathrm{cos}\left({nx}\right)\mid \\ $$$$\mathrm{Consider}\:{T}_{{n}} \left({x}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{cos}\left({k}\pi\right) \\ $$$$=\frac{\mathrm{sin}\left(\frac{{nx}}{\mathrm{2}}\right)\mathrm{cos}\left(\frac{\left({n}+\mathrm{1}\right){x}}{\mathrm{2}}\right)}{\mathrm{sin}\left(\frac{{x}}{\mathrm{2}}\right)} \\ $$$$\Rightarrow\mid{T}_{{n}} \left({x}\right)\mid\leq\frac{\mathrm{1}}{\mid\mathrm{sin}\left(\frac{{x}}{\mathrm{2}}\right)\mid} \\ $$$$\mathrm{Let}\:{U}_{{n}} \left({x}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{cos}^{\mathrm{2}} \left({k}\pi\right) \\ $$$$=\frac{{n}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{cos}\left(\mathrm{2}{kx}\right) \\ $$$$=\frac{{n}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{sin}\left({nx}\right)\mathrm{cos}\left(\left({n}+\mathrm{1}\right){x}\right)}{\mathrm{sin}\left({x}\right)}\right) \\ $$$$\Rightarrow{U}_{{n}} \left({x}\right)\leq\frac{{n}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\because\:\mid\mathrm{cos}\left({kx}\right)\mid\geq\mathrm{cos}^{\mathrm{2}} \left({kx}\right) \\ $$$$\Rightarrow{S}_{{n}} \left({x}\right)\geq{U}_{{n}} \left({x}\right) \\ $$$$\Rightarrow{S}_{{n}} \left({x}\right)\geq\frac{{n}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\therefore{S}_{{n}} \left({x}\right)\geq\frac{{n}−\mathrm{1}}{\mathrm{2}} \\ $$$$\left[\mathrm{Q}.\mathrm{E}.\mathrm{D}\right] \\ $$ | ||