Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 62169 by Tawa1 last updated on 16/Jun/19

Prove without induction that:  (1 + (√2))^(2n)  + (1 − (√2))^(2n)   is even for every  natural number n.

$$\mathrm{Prove}\:\mathrm{without}\:\mathrm{induction}\:\mathrm{that}:\:\:\left(\mathrm{1}\:+\:\sqrt{\mathrm{2}}\right)^{\mathrm{2n}} \:+\:\left(\mathrm{1}\:−\:\sqrt{\mathrm{2}}\right)^{\mathrm{2n}} \:\:\mathrm{is}\:\mathrm{even}\:\mathrm{for}\:\mathrm{every} \\ $$$$\mathrm{natural}\:\mathrm{number}\:\mathrm{n}.\:\:\: \\ $$

Answered by ajfour last updated on 16/Jun/19

(1+(√2))^(2n) +(1−(√2))^(2n)   =2Σ_(r=0) ^n ^(2n) C_(2r) ((√2))^(2r)    (odd terms cancel)   =2(integer)2^r  = even .

$$\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)^{\mathrm{2}{n}} +\left(\mathrm{1}−\sqrt{\mathrm{2}}\right)^{\mathrm{2}{n}} \\ $$$$=\mathrm{2}\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\:^{\mathrm{2}{n}} {C}_{\mathrm{2}{r}} \left(\sqrt{\mathrm{2}}\right)^{\mathrm{2}{r}} \:\:\:\left({odd}\:{terms}\:{cancel}\right) \\ $$$$\:=\mathrm{2}\left({integer}\right)\mathrm{2}^{{r}} \:=\:{even}\:. \\ $$

Commented by mr W last updated on 16/Jun/19

will (1+(√2))^n +(1−(√2))^n  also do?

$${will}\:\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)^{{n}} +\left(\mathrm{1}−\sqrt{\mathrm{2}}\right)^{{n}} \:{also}\:{do}? \\ $$

Commented by Tawa1 last updated on 16/Jun/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com