Question Number 164162 by Zaynal last updated on 15/Jan/22 | ||
![]() | ||
$$\mathrm{Prove}\:\mathrm{the}; \\ $$$$\left(\boldsymbol{{tan}}\:\boldsymbol{\alpha}\:+\:\frac{\boldsymbol{{cos}}\:\boldsymbol{\alpha}}{\mathrm{1}\:+\:\boldsymbol{{sin}}\:\boldsymbol{\alpha}}\right)\:\boldsymbol{{sin}}\:\boldsymbol{\alpha}\:=\:\boldsymbol{\alpha} \\ $$$$\:^{\left[\mathrm{Z}.\mathrm{A}\right]} \\ $$ | ||
Commented by som(math1967) last updated on 15/Jan/22 | ||
![]() | ||
$$\left\{\boldsymbol{{tan}\alpha}\:+\frac{\boldsymbol{{cos}\alpha}\left(\mathrm{1}β\boldsymbol{{sin}\alpha}\right)}{\mathrm{1}β\boldsymbol{{sin}}^{\mathrm{2}} \boldsymbol{\alpha}}\right\}Γ{sin}\alpha \\ $$$$=\left\{\boldsymbol{{tan}\alpha}+\frac{\boldsymbol{{cos}\alpha}\left(\mathrm{1}β\boldsymbol{{sin}\alpha}\right)}{\boldsymbol{{cos}}^{\mathrm{2}} \boldsymbol{\alpha}}\right\}Γ\boldsymbol{{sin}\alpha} \\ $$$$=\left\{\boldsymbol{{tan}\alpha}+\frac{\mathrm{1}}{\boldsymbol{{cos}\alpha}}\:β\boldsymbol{{tan}\alpha}\right\}Γ\boldsymbol{{sin}\alpha} \\ $$$$=\boldsymbol{{sec}\alpha}Γ\boldsymbol{{sin}\alpha}=\boldsymbol{{tan}\alpha} \\ $$$$\boldsymbol{{so}}\:\left(\boldsymbol{{tan}\alpha}+\frac{\boldsymbol{{cos}\alpha}}{\mathrm{1}+\boldsymbol{{sin}\alpha}}\right)\boldsymbol{{sin}\alpha}=\boldsymbol{{tan}\alpha} \\ $$$$\:\neq\boldsymbol{\alpha} \\ $$ | ||
Commented by Zaynal last updated on 15/Jan/22 | ||
![]() | ||
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}..,\: \\ $$$$\mathrm{answer}\:\mathrm{is}\:\mathrm{tan}\:\mathrm{apha} \\ $$ | ||
Commented by cortano1 last updated on 15/Jan/22 | ||
![]() | ||
Commented by som(math1967) last updated on 15/Jan/22 | ||
![]() | ||
$${sorry}\:{typo}\:{i}\:{corrected} \\ $$ | ||
Commented by Zaynal last updated on 15/Jan/22 | ||
![]() | ||
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir},\:\mathrm{very}\:\mathrm{good}. \\ $$ | ||