Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 9086 by tawakalitu last updated on 17/Nov/16

Prove the limit.,   ((sin(θ/2))/((θ/2))) = 1

$$\mathrm{Prove}\:\mathrm{the}\:\mathrm{limit}.,\:\:\:\frac{\mathrm{sin}\left(\theta/\mathrm{2}\right)}{\left(\theta/\mathrm{2}\right)}\:=\:\mathrm{1} \\ $$

Commented by 123456 last updated on 17/Nov/16

lim_(θ→0) ((sin θ/2)/(θ/2))=lim_(α→0) ((sin α)/α)  α=θ/2  θ→0≡α→0

$$\underset{\theta\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:\theta/\mathrm{2}}{\theta/\mathrm{2}}=\underset{\alpha\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:\alpha}{\alpha} \\ $$$$\alpha=\theta/\mathrm{2} \\ $$$$\theta\rightarrow\mathrm{0}\equiv\alpha\rightarrow\mathrm{0} \\ $$

Commented by 123456 last updated on 17/Nov/16

sin α≤α≤tan α α∈(−π/2∣π/2)/{0}  1≤(α/(sin α))≤(1/(cos α))  cos α≤((sin α)/α)≤1  cos α→1,α→0⇒((sin α)/α)→1

$$\mathrm{sin}\:\alpha\leqslant\alpha\leqslant\mathrm{tan}\:\alpha\:\alpha\in\left(−\pi/\mathrm{2}\mid\pi/\mathrm{2}\right)/\left\{\mathrm{0}\right\} \\ $$$$\mathrm{1}\leqslant\frac{\alpha}{\mathrm{sin}\:\alpha}\leqslant\frac{\mathrm{1}}{\mathrm{cos}\:\alpha} \\ $$$$\mathrm{cos}\:\alpha\leqslant\frac{\mathrm{sin}\:\alpha}{\alpha}\leqslant\mathrm{1} \\ $$$$\mathrm{cos}\:\alpha\rightarrow\mathrm{1},\alpha\rightarrow\mathrm{0}\Rightarrow\frac{\mathrm{sin}\:\alpha}{\alpha}\rightarrow\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com