Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 5603 by sanusihammed last updated on 22/May/16

Prove the identity    log_(a/b) x  =  ((log_a x log_b x)/(log_b x − log_a x))    From the Right hand side     ((log_a x log_b x)/(log_b x − log_a x))    Using... log_n m = ((logm)/(logn))    = ((((logx)/(loga)) × ((logx)/(logb)))/( ((logx)/(logb)) − ((logx)/(loga))))    = ((((logx)^2 )/(loga logb))/((logalogx − logb logx)/(loga logb )))    = (((logx)^2 )/(loga logb)) × ((loga logb)/(logalogx − logblogx))    = (((logx)^2 )/(logalogx − logblogx))    = (((logx)^2 )/(logx(loga − logb)))    = ((logx)/(loga − logb ))    = ((logx)/(log(a/b)))    Using... log_n m = ((logm)/(logn))    = log_(a/b) x               [Left Hand Side]    PROVED      THANKS SO MUCH YOZII

$${Prove}\:{the}\:{identity} \\ $$$$ \\ $$$${log}_{\frac{{a}}{{b}}} {x}\:\:=\:\:\frac{{log}_{{a}} {x}\:{log}_{{b}} {x}}{{log}_{{b}} {x}\:−\:{log}_{{a}} {x}} \\ $$$$ \\ $$$${From}\:{the}\:{Right}\:{hand}\:{side}\: \\ $$$$ \\ $$$$\frac{{log}_{{a}} {x}\:{log}_{{b}} {x}}{{log}_{{b}} {x}\:−\:{log}_{{a}} {x}} \\ $$$$ \\ $$$${Using}...\:{log}_{{n}} {m}\:=\:\frac{{logm}}{{logn}} \\ $$$$ \\ $$$$=\:\frac{\frac{{logx}}{{loga}}\:×\:\frac{{logx}}{{logb}}}{\:\frac{{logx}}{{logb}}\:−\:\frac{{logx}}{{loga}}} \\ $$$$ \\ $$$$=\:\frac{\frac{\left({logx}\right)^{\mathrm{2}} }{{loga}\:{logb}}}{\frac{{logalogx}\:−\:{logb}\:{logx}}{{loga}\:{logb}\:}} \\ $$$$ \\ $$$$=\:\frac{\left({logx}\right)^{\mathrm{2}} }{{loga}\:{logb}}\:×\:\frac{{loga}\:{logb}}{{logalogx}\:−\:{logblogx}} \\ $$$$ \\ $$$$=\:\frac{\left({logx}\right)^{\mathrm{2}} }{{logalogx}\:−\:{logblogx}} \\ $$$$ \\ $$$$=\:\frac{\left({logx}\right)^{\mathrm{2}} }{{logx}\left({loga}\:−\:{logb}\right)} \\ $$$$ \\ $$$$=\:\frac{{logx}}{{loga}\:−\:{logb}\:} \\ $$$$ \\ $$$$=\:\frac{{logx}}{{log}\frac{{a}}{{b}}} \\ $$$$ \\ $$$${Using}...\:{log}_{{n}} {m}\:=\:\frac{{logm}}{{logn}} \\ $$$$ \\ $$$$=\:{log}_{\frac{{a}}{{b}}} {x}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[{Left}\:{Hand}\:{Side}\right] \\ $$$$ \\ $$$${PROVED} \\ $$$$ \\ $$$$ \\ $$$${THANKS}\:{SO}\:{MUCH}\:{YOZII} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by Yozzii last updated on 21/May/16

By change of base, log_n r=((log_e r)/(log_e n))=((lnr)/(ln(n)))  rhs=((((lnx)/(lna))×((lnx)/(lnb)))/(((lnx)/(lnb))−((lnx)/(lna))))=((ln^2 x)/(lnalnx−lnxlnb))  rhs=((lnx)/(lna−lnb))  rhs=((lnx)/(ln(a/b)))=log_(a/b) x=lhs

$${By}\:{change}\:{of}\:{base},\:{log}_{{n}} {r}=\frac{{log}_{{e}} {r}}{{log}_{{e}} {n}}=\frac{{lnr}}{{ln}\left({n}\right)} \\ $$$${rhs}=\frac{\frac{{lnx}}{{lna}}×\frac{{lnx}}{{lnb}}}{\frac{{lnx}}{{lnb}}−\frac{{lnx}}{{lna}}}=\frac{{ln}^{\mathrm{2}} {x}}{{lnalnx}−{lnxlnb}} \\ $$$${rhs}=\frac{{lnx}}{{lna}−{lnb}} \\ $$$${rhs}=\frac{{lnx}}{{ln}\frac{{a}}{{b}}}={log}_{{a}/{b}} {x}={lhs} \\ $$

Commented by sanusihammed last updated on 22/May/16

Thanks

$${Thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com