Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 204293 by depressiveshrek last updated on 11/Feb/24

Prove the following trig identity:  ((2sinα+sin3α+sin5α)/(cosα−2cos2α+cos3α))=((2cos2α)/(tan(α/2)))

$$\mathrm{Prove}\:\mathrm{the}\:\mathrm{following}\:\mathrm{trig}\:\mathrm{identity}: \\ $$$$\frac{\mathrm{2sin}\alpha+\mathrm{sin3}\alpha+\mathrm{sin5}\alpha}{\mathrm{cos}\alpha−\mathrm{2cos2}\alpha+\mathrm{cos3}\alpha}=\frac{\mathrm{2cos2}\alpha}{\mathrm{tan}\frac{\alpha}{\mathrm{2}}} \\ $$

Commented by Frix last updated on 11/Feb/24

Try.  α=(π/6) ⇒ lhs=−5(2+(√3))     rhs=2+(√3)  α=(π/2) ⇒ lhs=1     rhs=−2  ...

$$\mathrm{Try}. \\ $$$$\alpha=\frac{\pi}{\mathrm{6}}\:\Rightarrow\:\mathrm{lhs}=−\mathrm{5}\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)\:\:\:\:\:\mathrm{rhs}=\mathrm{2}+\sqrt{\mathrm{3}} \\ $$$$\alpha=\frac{\pi}{\mathrm{2}}\:\Rightarrow\:\mathrm{lhs}=\mathrm{1}\:\:\:\:\:\mathrm{rhs}=−\mathrm{2} \\ $$$$... \\ $$

Answered by Frix last updated on 11/Feb/24

It′s false.

$$\mathrm{It}'\mathrm{s}\:\mathrm{false}. \\ $$

Commented by depressiveshrek last updated on 11/Feb/24

Why?

$$\mathrm{Why}? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com