Question Number 164163 by Zaynal last updated on 15/Jan/22 | ||
![]() | ||
$$\mathrm{Prove}\:\mathrm{the}; \\ $$$$\int_{β\infty} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{1}\:+\:\boldsymbol{{x}}^{\mathrm{2}} }\:\boldsymbol{{dx}}\:=\:\boldsymbol{\pi} \\ $$$$\:^{\left\{\mathrm{Z}.\mathrm{A}\right\}} \\ $$ | ||
Answered by mathmax by abdo last updated on 15/Jan/22 | ||
![]() | ||
$$\int_{β\infty} ^{+\infty} \:\frac{\mathrm{dx}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }=\mathrm{lim}_{\xi\rightarrow+\infty} \:\:\int_{β\xi} ^{\xi} \:\frac{\mathrm{dx}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }=\mathrm{lim}_{\xi\rightarrow+\infty} \left[\mathrm{arctanx}\right]_{β\xi} ^{\xi} \\ $$$$=\mathrm{lim}_{\xi\rightarrow+\infty} \mathrm{2arctan}\xi\:=\mathrm{2}.\frac{\pi}{\mathrm{2}}=\pi \\ $$$$\mathrm{or} \\ $$$$\int_{β\infty} ^{+\infty} \:\frac{\mathrm{dx}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }=_{\mathrm{x}=\mathrm{tan}\theta} \:\:\int_{β\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \theta}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \theta}\mathrm{d}\theta\:=\int_{β\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{d}\theta\:=\pi \\ $$ | ||
Commented by Zaynal last updated on 15/Jan/22 | ||
![]() | ||
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir},\:\mathrm{very}\:\mathrm{good}\: \\ $$ | ||
Commented by Mathspace last updated on 15/Jan/22 | ||
![]() | ||
$${you}\:{are}\:{welcome} \\ $$ | ||
Answered by smallEinstein last updated on 16/Jan/22 | ||
![]() | ||