Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 19350 by Tinkutara last updated on 10/Aug/17

Prove that ∣z_1  + z_2 ∣ = ∣z_1  − z_2 ∣ ⇔  arg(z_1 ) − arg(z_2 ) = (π/2)

$$\mathrm{Prove}\:\mathrm{that}\:\mid{z}_{\mathrm{1}} \:+\:{z}_{\mathrm{2}} \mid\:=\:\mid{z}_{\mathrm{1}} \:−\:{z}_{\mathrm{2}} \mid\:\Leftrightarrow \\ $$$$\mathrm{arg}\left({z}_{\mathrm{1}} \right)\:−\:\mathrm{arg}\left({z}_{\mathrm{2}} \right)\:=\:\frac{\pi}{\mathrm{2}} \\ $$

Answered by ajfour last updated on 10/Aug/17

⇒ ∣z_1 +z_2 ∣^2 =∣z_1 −z_2 ∣^2   z_1 ^2 +z_2 ^2 +2Re(z_1 z_2 ^� )=z_1 ^2 +z_2 ^2 −2Re(z_1 z_2 ^� )  ⇒ Re(z_1 z_2 ^� )=0    Re[(x_1 +iy_1 )(x_2 −iy_2 )]=0  ⇒    x_1 x_2 =−y_1 y_2   ⇒  (y_2 /x_2 ) =−(x_1 /y_1 )  ⇒tan [arg(z_2 )]=−(1/(tan [arg(z_1 )]))  ⇒ tan θ_1 tan θ_2 +1=0  and as tan (θ_1 −θ_2 )=((tan θ_1 −tan θ_2 )/(1+tan θ_1 tan θ_2 ))  ⇒   θ_1 −θ_2 =(π/2)        arg(z_1 )−arg(z_2 )= (π/2) .

$$\Rightarrow\:\mid\mathrm{z}_{\mathrm{1}} +\mathrm{z}_{\mathrm{2}} \mid^{\mathrm{2}} =\mid\mathrm{z}_{\mathrm{1}} −\mathrm{z}_{\mathrm{2}} \mid^{\mathrm{2}} \\ $$$$\mathrm{z}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{z}_{\mathrm{2}} ^{\mathrm{2}} +\mathrm{2Re}\left(\mathrm{z}_{\mathrm{1}} \bar {\mathrm{z}}_{\mathrm{2}} \right)=\mathrm{z}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{z}_{\mathrm{2}} ^{\mathrm{2}} −\mathrm{2Re}\left(\mathrm{z}_{\mathrm{1}} \bar {\mathrm{z}}_{\mathrm{2}} \right) \\ $$$$\Rightarrow\:\mathrm{Re}\left(\mathrm{z}_{\mathrm{1}} \bar {\mathrm{z}}_{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\:\:\mathrm{Re}\left[\left(\mathrm{x}_{\mathrm{1}} +\mathrm{iy}_{\mathrm{1}} \right)\left(\mathrm{x}_{\mathrm{2}} −\mathrm{iy}_{\mathrm{2}} \right)\right]=\mathrm{0} \\ $$$$\Rightarrow\:\:\:\:\mathrm{x}_{\mathrm{1}} \mathrm{x}_{\mathrm{2}} =−\mathrm{y}_{\mathrm{1}} \mathrm{y}_{\mathrm{2}} \\ $$$$\Rightarrow\:\:\frac{\mathrm{y}_{\mathrm{2}} }{\mathrm{x}_{\mathrm{2}} }\:=−\frac{\mathrm{x}_{\mathrm{1}} }{\mathrm{y}_{\mathrm{1}} } \\ $$$$\Rightarrow\mathrm{tan}\:\left[\mathrm{arg}\left(\mathrm{z}_{\mathrm{2}} \right)\right]=−\frac{\mathrm{1}}{\mathrm{tan}\:\left[\mathrm{arg}\left(\mathrm{z}_{\mathrm{1}} \right)\right]} \\ $$$$\Rightarrow\:\mathrm{tan}\:\theta_{\mathrm{1}} \mathrm{tan}\:\theta_{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{and}\:\mathrm{as}\:\mathrm{tan}\:\left(\theta_{\mathrm{1}} −\theta_{\mathrm{2}} \right)=\frac{\mathrm{tan}\:\theta_{\mathrm{1}} −\mathrm{tan}\:\theta_{\mathrm{2}} }{\mathrm{1}+\mathrm{tan}\:\theta_{\mathrm{1}} \mathrm{tan}\:\theta_{\mathrm{2}} } \\ $$$$\Rightarrow\:\:\:\theta_{\mathrm{1}} −\theta_{\mathrm{2}} =\frac{\pi}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\mathrm{arg}\left(\mathrm{z}_{\mathrm{1}} \right)−\mathrm{arg}\left(\mathrm{z}_{\mathrm{2}} \right)=\:\frac{\pi}{\mathrm{2}}\:.\:\:\: \\ $$

Commented by Tinkutara last updated on 10/Aug/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com