Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 38059 by suryavi last updated on 21/Jun/18

Prove that Σ(x_i −x^− )=0

$${Prove}\:{that}\:\Sigma\left({x}_{{i}} −\overset{−} {{x}}\right)=\mathrm{0} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 21/Jun/18

Σ(x_i −x^− )  x^− =((Σx_i )/n)  Σ(x_i −x^− )  =(x_1 −x^− )+(x_2 −x^− )+(x_3 −x^− )+...+(x_n −x^− )  =(x_1 +x_2 +x_3 +....)−(x^− +x^− +...+x^− )  =((Σx_i )/n)×n−nx^−   =nx^− −nx^−   =0

$$\Sigma\left({x}_{{i}} −\overset{−} {{x}}\right) \\ $$$$\overset{−} {{x}}=\frac{\Sigma{x}_{{i}} }{{n}} \\ $$$$\Sigma\left({x}_{{i}} −\overset{−} {{x}}\right) \\ $$$$=\left({x}_{\mathrm{1}} −\overset{−} {{x}}\right)+\left({x}_{\mathrm{2}} −\overset{−} {{x}}\right)+\left({x}_{\mathrm{3}} −\overset{−} {{x}}\right)+...+\left({x}_{{n}} −\overset{−} {{x}}\right) \\ $$$$=\left({x}_{\mathrm{1}} +{x}_{\mathrm{2}} +{x}_{\mathrm{3}} +....\right)−\left(\overset{−} {{x}}+\overset{−} {{x}}+...+\overset{−} {{x}}\right) \\ $$$$=\frac{\Sigma{x}_{{i}} }{{n}}×{n}−{n}\overset{−} {{x}} \\ $$$$={n}\overset{−} {{x}}−{n}\overset{−} {{x}} \\ $$$$=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com