Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 196650 by CrispyXYZ last updated on 28/Aug/23

Prove that x^3 =y^6 +20 has no positive integer solution.

$$\mathrm{Prove}\:\mathrm{that}\:{x}^{\mathrm{3}} ={y}^{\mathrm{6}} +\mathrm{20}\:\mathrm{has}\:\mathrm{no}\:\mathrm{positive}\:\mathrm{integer}\:\mathrm{solution}. \\ $$

Answered by deleteduser1 last updated on 28/Aug/23

x^3 ≡1,−1 or 0(mod 9)  when (y,9)=1;y^6 ≡^9 1⇒y^6 +20≡3(mod 9)  when y=9k;y^6 ≡^9 0⇒y^6 +20≡2(mod 9)  There exists no solution for x,y∈Z^+  ,since   y^6 +20 never equals −1,0,1 (mod 9)

$${x}^{\mathrm{3}} \equiv\mathrm{1},−\mathrm{1}\:{or}\:\mathrm{0}\left({mod}\:\mathrm{9}\right) \\ $$$${when}\:\left({y},\mathrm{9}\right)=\mathrm{1};{y}^{\mathrm{6}} \overset{\mathrm{9}} {\equiv}\mathrm{1}\Rightarrow{y}^{\mathrm{6}} +\mathrm{20}\equiv\mathrm{3}\left({mod}\:\mathrm{9}\right) \\ $$$${when}\:{y}=\mathrm{9}{k};{y}^{\mathrm{6}} \overset{\mathrm{9}} {\equiv}\mathrm{0}\Rightarrow{y}^{\mathrm{6}} +\mathrm{20}\equiv\mathrm{2}\left({mod}\:\mathrm{9}\right) \\ $$$${There}\:{exists}\:{no}\:{solution}\:{for}\:{x},{y}\in\mathbb{Z}^{+} \:,{since}\: \\ $$$${y}^{\mathrm{6}} +\mathrm{20}\:{never}\:{equals}\:−\mathrm{1},\mathrm{0},\mathrm{1}\:\left({mod}\:\mathrm{9}\right) \\ $$

Answered by MM42 last updated on 29/Aug/23

x^3 −y^6 =20⇒(x−y^2 )(x^2 +xy^2 +y^4 )=20  1) { ((x−y^2 =1)),((x^2 +xy^2 +y^4 =20)) :}⇒3y^2 ( y^2 +1)=19  ×  2) { ((x−y^2 =2)),((x^2 +xy^2 +y^4 =10)) :}⇒y^2 ( y^2 +2)=2  ×  3) { ((x−y^2 =4)),((x^2 +xy^2 +y^4 =5)) :}⇒3y^2 ( y^2 +4)=−1  ×

$${x}^{\mathrm{3}} −{y}^{\mathrm{6}} =\mathrm{20}\Rightarrow\left({x}−{y}^{\mathrm{2}} \right)\left({x}^{\mathrm{2}} +{xy}^{\mathrm{2}} +{y}^{\mathrm{4}} \right)=\mathrm{20} \\ $$$$\left.\mathrm{1}\right)\begin{cases}{{x}−{y}^{\mathrm{2}} =\mathrm{1}}\\{{x}^{\mathrm{2}} +{xy}^{\mathrm{2}} +{y}^{\mathrm{4}} =\mathrm{20}}\end{cases}\Rightarrow\mathrm{3}{y}^{\mathrm{2}} \left(\:{y}^{\mathrm{2}} +\mathrm{1}\right)=\mathrm{19}\:\:× \\ $$$$\left.\mathrm{2}\right)\begin{cases}{{x}−{y}^{\mathrm{2}} =\mathrm{2}}\\{{x}^{\mathrm{2}} +{xy}^{\mathrm{2}} +{y}^{\mathrm{4}} =\mathrm{10}}\end{cases}\Rightarrow{y}^{\mathrm{2}} \left(\:{y}^{\mathrm{2}} +\mathrm{2}\right)=\mathrm{2}\:\:× \\ $$$$\left.\mathrm{3}\right)\begin{cases}{{x}−{y}^{\mathrm{2}} =\mathrm{4}}\\{{x}^{\mathrm{2}} +{xy}^{\mathrm{2}} +{y}^{\mathrm{4}} =\mathrm{5}}\end{cases}\Rightarrow\mathrm{3}{y}^{\mathrm{2}} \left(\:{y}^{\mathrm{2}} +\mathrm{4}\right)=−\mathrm{1}\:\:× \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com