Question and Answers Forum

All Questions      Topic List

Set Theory Questions

Previous in All Question      Next in All Question      

Previous in Set Theory      Next in Set Theory      

Question Number 195157 by Erico last updated on 25/Jul/23

Prove that  (x^3 /(2sin^2 ((1/2)arctan (x/y))))+(y^3 /(2cos^2 ((1/2)arctan (y/x))))=(x+y)(x^2 +y^2 )

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\frac{{x}^{\mathrm{3}} }{\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}{arctan}\:\frac{{x}}{{y}}\right)}+\frac{{y}^{\mathrm{3}} }{\mathrm{2}{cos}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}{arctan}\:\frac{{y}}{{x}}\right)}=\left({x}+{y}\right)\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right) \\ $$

Answered by Frix last updated on 25/Jul/23

sin^2  tan^(−1)  α =(((√(α^2 +1))−1)/(2(√(α^2 +1))))=(((√(x^2 +y^2 ))−y)/(2(√(x^2 +y^2 ))))  cos^2  tan^(−1)  (1/α) =(((√(α^2 +1))+α)/(2(√(α^2 +1))))=(((√(x^2 +y^2 ))+x)/(2(√(x^2 +y^2 ))))  (x^3 /(2(((√(x^2 +y^2 ))−y)/(2(√(x^2 +y^2 ))))))+(y^3 /(2(((√(x^2 +y^2 ))+x)/(2(√(x^2 +y^2 ))))))=  =(√(x^2 +y^2 ))((x^3 /( (√(x^2 +y^2 ))−y))+(y^3 /( (√(x^2 +y^2 ))+x)))=  =(√(x^2 +y^2 ))(x((√(x^2 +y^2 ))+y)+y((√(x^2 +y^2 ))−x))=  =(√(x^2 +y^2 ))(x+y)(√(x^2 +y^2 ))=  =(x+y)(x^2 +y^2 )

$$\mathrm{sin}^{\mathrm{2}} \:\mathrm{tan}^{−\mathrm{1}} \:\alpha\:=\frac{\sqrt{\alpha^{\mathrm{2}} +\mathrm{1}}−\mathrm{1}}{\mathrm{2}\sqrt{\alpha^{\mathrm{2}} +\mathrm{1}}}=\frac{\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }−{y}}{\mathrm{2}\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }} \\ $$$$\mathrm{cos}^{\mathrm{2}} \:\mathrm{tan}^{−\mathrm{1}} \:\frac{\mathrm{1}}{\alpha}\:=\frac{\sqrt{\alpha^{\mathrm{2}} +\mathrm{1}}+\alpha}{\mathrm{2}\sqrt{\alpha^{\mathrm{2}} +\mathrm{1}}}=\frac{\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }+{x}}{\mathrm{2}\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }} \\ $$$$\frac{{x}^{\mathrm{3}} }{\mathrm{2}\frac{\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }−{y}}{\mathrm{2}\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }}}+\frac{{y}^{\mathrm{3}} }{\mathrm{2}\frac{\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }+{x}}{\mathrm{2}\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }}}= \\ $$$$=\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\left(\frac{{x}^{\mathrm{3}} }{\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }−{y}}+\frac{{y}^{\mathrm{3}} }{\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }+{x}}\right)= \\ $$$$=\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\left({x}\left(\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }+{y}\right)+{y}\left(\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }−{x}\right)\right)= \\ $$$$=\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\left({x}+{y}\right)\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }= \\ $$$$=\left({x}+{y}\right)\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com