Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 43705 by Tawa1 last updated on 14/Sep/18

Prove that to each quadratic factor in the denominator of the form   ax^2  + bx + c   which does not have linear factors, there corresponds to  a partial fraction of the form    ((Ax + B)/(ax^2  + bx + c))   where  A and B are constant.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{to}\:\mathrm{each}\:\mathrm{quadratic}\:\mathrm{factor}\:\mathrm{in}\:\mathrm{the}\:\mathrm{denominator}\:\mathrm{of}\:\mathrm{the}\:\mathrm{form}\: \\ $$$$\mathrm{ax}^{\mathrm{2}} \:+\:\mathrm{bx}\:+\:\mathrm{c}\:\:\:\mathrm{which}\:\mathrm{does}\:\mathrm{not}\:\mathrm{have}\:\mathrm{linear}\:\mathrm{factors},\:\mathrm{there}\:\mathrm{corresponds}\:\mathrm{to} \\ $$$$\mathrm{a}\:\mathrm{partial}\:\mathrm{fraction}\:\mathrm{of}\:\mathrm{the}\:\mathrm{form}\:\:\:\:\frac{\mathrm{Ax}\:+\:\mathrm{B}}{\mathrm{ax}^{\mathrm{2}} \:+\:\mathrm{bx}\:+\:\mathrm{c}}\:\:\:\mathrm{where}\:\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{are}\:\mathrm{constant}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com