Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 19507 by Tinkutara last updated on 12/Aug/17

Prove that three points z_1 , z_2 , z_3  are  collinear if  determinant ((z_1 ,z_1 ^� ,1),(z_2 ,z_2 ^� ,1),(z_3 ,z_3 ^� ,1))= 0

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{three}\:\mathrm{points}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} ,\:{z}_{\mathrm{3}} \:\mathrm{are} \\ $$$$\mathrm{collinear}\:\mathrm{if}\:\begin{vmatrix}{{z}_{\mathrm{1}} }&{\bar {{z}}_{\mathrm{1}} }&{\mathrm{1}}\\{{z}_{\mathrm{2}} }&{\bar {{z}}_{\mathrm{2}} }&{\mathrm{1}}\\{{z}_{\mathrm{3}} }&{\bar {{z}}_{\mathrm{3}} }&{\mathrm{1}}\end{vmatrix}=\:\mathrm{0} \\ $$

Answered by dioph last updated on 12/Aug/17

 determinant ((z_1 ,z_1 ^� ,1),(z_2 ,z_2 ^� ,1),(z_3 ,z_3 ^� ,1))= 0 ⇒  ⇒ z_1 z_2 ^�  + z_1 ^� z_3  + z_2 z_3 ^�  = z_1 ^� z_2 + z_1 z_3 ^� + z_2 ^� z_3   ⇒ (z_1 z_2 ^� −z_1 ^� z_2 )+(z_1 ^� z_3 −z_1 z_3 ^� )+(z_2 z_3 ^� −z_2 ^� z_3 )=0  α_n  + iβ_n  := z_n   ⇒ (α_2 β_1 −α_1 β_2 )+(α_1 β_3 −α_3 β_1 )+(α_3 β_2 −α_2 β_3 )=0  ⇒ (α_2 −α_3 )β_1 +(α_3 −α_1 )β_2 +(α_1 −α_2 )β_3  = 0  Δα_(nm) := α_n −α_m , Δβ_(nm)  := β_n −β_m   ⇒ Δα_(31) (β_1 +Δβ_(21) )=Δα_(21) (β_1 +Δβ_(31) )+(Δα_(31) −Δα_(21) )β_1   ⇒ Δα_(31) Δβ_(21)  = Δα_(21) Δβ_(31)   ⇒((Δα_(31) )/(Δβ_(31) )) = ((Δα_(21) )/(Δβ_(21) )) ■

$$\begin{vmatrix}{{z}_{\mathrm{1}} }&{\bar {{z}}_{\mathrm{1}} }&{\mathrm{1}}\\{{z}_{\mathrm{2}} }&{\bar {{z}}_{\mathrm{2}} }&{\mathrm{1}}\\{{z}_{\mathrm{3}} }&{\bar {{z}}_{\mathrm{3}} }&{\mathrm{1}}\end{vmatrix}=\:\mathrm{0}\:\Rightarrow \\ $$$$\Rightarrow\:{z}_{\mathrm{1}} \bar {{z}}_{\mathrm{2}} \:+\:\bar {{z}}_{\mathrm{1}} {z}_{\mathrm{3}} \:+\:{z}_{\mathrm{2}} \bar {{z}}_{\mathrm{3}} \:=\:\bar {{z}}_{\mathrm{1}} {z}_{\mathrm{2}} +\:{z}_{\mathrm{1}} \bar {{z}}_{\mathrm{3}} +\:\bar {{z}}_{\mathrm{2}} {z}_{\mathrm{3}} \\ $$$$\Rightarrow\:\left({z}_{\mathrm{1}} \bar {{z}}_{\mathrm{2}} −\bar {{z}}_{\mathrm{1}} {z}_{\mathrm{2}} \right)+\left(\bar {{z}}_{\mathrm{1}} {z}_{\mathrm{3}} −{z}_{\mathrm{1}} \bar {{z}}_{\mathrm{3}} \right)+\left({z}_{\mathrm{2}} \bar {{z}}_{\mathrm{3}} −\bar {{z}}_{\mathrm{2}} {z}_{\mathrm{3}} \right)=\mathrm{0} \\ $$$$\alpha_{{n}} \:+\:{i}\beta_{{n}} \::=\:{z}_{{n}} \\ $$$$\Rightarrow\:\left(\alpha_{\mathrm{2}} \beta_{\mathrm{1}} −\alpha_{\mathrm{1}} \beta_{\mathrm{2}} \right)+\left(\alpha_{\mathrm{1}} \beta_{\mathrm{3}} −\alpha_{\mathrm{3}} \beta_{\mathrm{1}} \right)+\left(\alpha_{\mathrm{3}} \beta_{\mathrm{2}} −\alpha_{\mathrm{2}} \beta_{\mathrm{3}} \right)=\mathrm{0} \\ $$$$\Rightarrow\:\left(\alpha_{\mathrm{2}} −\alpha_{\mathrm{3}} \right)\beta_{\mathrm{1}} +\left(\alpha_{\mathrm{3}} −\alpha_{\mathrm{1}} \right)\beta_{\mathrm{2}} +\left(\alpha_{\mathrm{1}} −\alpha_{\mathrm{2}} \right)\beta_{\mathrm{3}} \:=\:\mathrm{0} \\ $$$$\Delta\alpha_{{nm}} :=\:\alpha_{{n}} −\alpha_{{m}} ,\:\Delta\beta_{{nm}} \::=\:\beta_{{n}} −\beta_{{m}} \\ $$$$\Rightarrow\:\Delta\alpha_{\mathrm{31}} \left(\beta_{\mathrm{1}} +\Delta\beta_{\mathrm{21}} \right)=\Delta\alpha_{\mathrm{21}} \left(\beta_{\mathrm{1}} +\Delta\beta_{\mathrm{31}} \right)+\left(\Delta\alpha_{\mathrm{31}} −\Delta\alpha_{\mathrm{21}} \right)\beta_{\mathrm{1}} \\ $$$$\Rightarrow\:\Delta\alpha_{\mathrm{31}} \Delta\beta_{\mathrm{21}} \:=\:\Delta\alpha_{\mathrm{21}} \Delta\beta_{\mathrm{31}} \\ $$$$\Rightarrow\frac{\Delta\alpha_{\mathrm{31}} }{\Delta\beta_{\mathrm{31}} }\:=\:\frac{\Delta\alpha_{\mathrm{21}} }{\Delta\beta_{\mathrm{21}} }\:\blacksquare \\ $$

Commented by Tinkutara last updated on 12/Aug/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com