Question Number 21756 by FilupS last updated on 03/Oct/17 | ||
$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{product}\:\mathrm{for}\:\mathrm{all} \\ $$$${n}\mathrm{th}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{unity}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{zero}, \\ $$$$\mathrm{except}\:{n}=\mathrm{1}. \\ $$$$\: \\ $$$$\mathrm{Note}: \\ $$$${U}_{{n}} =\left\{{e}^{\mathrm{2}{k}\pi{i}/{n}} \:\mid\:{k}\in\left\{\mathrm{1},\:\mathrm{2},\:...,\:{n}\right\}\right\} \\ $$$${x}^{{n}} =\mathrm{1} \\ $$ | ||