Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 37733 by kunal1234523 last updated on 17/Jun/18

Prove that the equation sin θ = x + (1/x)   is impossible if x be real.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{sin}\:\theta\:=\:{x}\:+\:\frac{\mathrm{1}}{{x}}\: \\ $$$$\mathrm{is}\:\mathrm{impossible}\:\mathrm{if}\:{x}\:\mathrm{be}\:\mathrm{real}. \\ $$

Answered by MrW3 last updated on 17/Jun/18

if x>0:  sin θ=x+(1/x)=((√x)−(1/(√x)))^2 +2≥2  but sin θ≤1 ⇒ no solution    if x<0:  sin θ=x+(1/x)=−((√(−x))−(1/(√(−x))))^2 −2≤−2  but sin θ≥−1 ⇒ no solution

$${if}\:{x}>\mathrm{0}: \\ $$$$\mathrm{sin}\:\theta={x}+\frac{\mathrm{1}}{{x}}=\left(\sqrt{{x}}−\frac{\mathrm{1}}{\sqrt{{x}}}\right)^{\mathrm{2}} +\mathrm{2}\geqslant\mathrm{2} \\ $$$${but}\:\mathrm{sin}\:\theta\leqslant\mathrm{1}\:\Rightarrow\:{no}\:{solution} \\ $$$$ \\ $$$${if}\:{x}<\mathrm{0}: \\ $$$$\mathrm{sin}\:\theta={x}+\frac{\mathrm{1}}{{x}}=−\left(\sqrt{−{x}}−\frac{\mathrm{1}}{\sqrt{−{x}}}\right)^{\mathrm{2}} −\mathrm{2}\leqslant−\mathrm{2} \\ $$$${but}\:\mathrm{sin}\:\theta\geqslant−\mathrm{1}\:\Rightarrow\:{no}\:{solution} \\ $$

Commented by kunal1234523 last updated on 17/Jun/18

thank you very much MrW3

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{MrW3} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com