Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 119839 by ZiYangLee last updated on 27/Oct/20

Prove that  sin x−cos^2 x+sin^3 x−cos^4 x+sin^5 x−cos^6 x  +sin^7 x−cos^8 x+……=(√2)−1

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\mathrm{sin}\:{x}−\mathrm{cos}^{\mathrm{2}} {x}+\mathrm{sin}^{\mathrm{3}} {x}−\mathrm{cos}^{\mathrm{4}} {x}+\mathrm{sin}^{\mathrm{5}} {x}−\mathrm{cos}^{\mathrm{6}} {x} \\ $$$$+\mathrm{sin}^{\mathrm{7}} {x}−\mathrm{cos}^{\mathrm{8}} {x}+\ldots\ldots=\sqrt{\mathrm{2}}−\mathrm{1} \\ $$

Answered by TANMAY PANACEA last updated on 27/Oct/20

sinx=a  cosx=b  a^2 +b^2 =1  S=(a+a^3 +a^5 +a^7 +...)−(b^2 +b^4 +b^6 +b^8 +...)  =((a(1−a^(2n) ))/(1−a^2 ))−((b^2 (1−b^(2n) ))/(1−b^2 ))  when n→∞  S_n =(a/(1−a^2 ))−(b^2 /(1−b^2 ))     wait

$${sinx}={a} \\ $$$${cosx}={b} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{1} \\ $$$${S}=\left({a}+{a}^{\mathrm{3}} +{a}^{\mathrm{5}} +{a}^{\mathrm{7}} +...\right)−\left({b}^{\mathrm{2}} +{b}^{\mathrm{4}} +{b}^{\mathrm{6}} +{b}^{\mathrm{8}} +...\right) \\ $$$$=\frac{{a}\left(\mathrm{1}−{a}^{\mathrm{2}{n}} \right)}{\mathrm{1}−{a}^{\mathrm{2}} }−\frac{{b}^{\mathrm{2}} \left(\mathrm{1}−{b}^{\mathrm{2}{n}} \right)}{\mathrm{1}−{b}^{\mathrm{2}} } \\ $$$${when}\:{n}\rightarrow\infty \\ $$$${S}_{{n}} =\frac{{a}}{\mathrm{1}−{a}^{\mathrm{2}} }−\frac{{b}^{\mathrm{2}} }{\mathrm{1}−{b}^{\mathrm{2}} }\: \\ $$$$ \\ $$$${wait} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com