Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 116281 by aye48 last updated on 02/Oct/20

Prove that   sin 10° sin 30° sin 50° sin 70°.

$$\mathrm{Prove}\:\mathrm{that}\:\:\:\mathrm{sin}\:\mathrm{10}°\:\mathrm{sin}\:\mathrm{30}°\:\mathrm{sin}\:\mathrm{50}°\:\mathrm{sin}\:\mathrm{70}°. \\ $$

Answered by Dwaipayan Shikari last updated on 02/Oct/20

sinθsin3θsin5θsin7θ                  θ=10°  (1/2)(2sinθsin7θ)(1/2)(2sin5θsin3θ)  (1/4)(cos6θ−cos8θ)(cos2θ−cos8θ)  (1/4)cos6θcos2θ−(1/4)cos8θcos2θ−(1/4)cos6θcos8θ+(1/4)cos^2 8θ  (1/8)cos2θ+(1/8)(1+cos16θ)−(1/8)cos10θ−(1/8)cos6θ−(1/8)cos14θ−(1/8)cos2θ  =(1/8)cos2θ+(1/8)−(1/8)cos2θ+(1/8)cosθ−(1/(16))+(1/8)cos4θ−(1/8)cos2θ  =(1/(16))−(1/8)cos2θ+(1/8)cos4θ+(1/8)cosθ  =(1/(16))−(1/4)sin3θcosθ+(1/8)cosθ  =(1/(16))−(1/8)cosθ+(1/8)cosθ=(1/(16))

$$\mathrm{sin}\theta\mathrm{sin3}\theta\mathrm{sin5}\theta\mathrm{sin7}\theta\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\theta=\mathrm{10}° \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2sin}\theta\mathrm{sin7}\theta\right)\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2sin5}\theta\mathrm{sin3}\theta\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{cos6}\theta−\mathrm{cos8}\theta\right)\left(\mathrm{cos2}\theta−\mathrm{cos8}\theta\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\mathrm{cos6}\theta\mathrm{cos2}\theta−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{cos8}\theta\mathrm{cos2}\theta−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{cos6}\theta\mathrm{cos8}\theta+\frac{\mathrm{1}}{\mathrm{4}}\mathrm{cos}^{\mathrm{2}} \mathrm{8}\theta \\ $$$$\frac{\mathrm{1}}{\mathrm{8}}\mathrm{cos2}\theta+\frac{\mathrm{1}}{\mathrm{8}}\left(\mathrm{1}+\mathrm{cos16}\theta\right)−\frac{\mathrm{1}}{\mathrm{8}}\mathrm{cos10}\theta−\frac{\mathrm{1}}{\mathrm{8}}\mathrm{cos6}\theta−\frac{\mathrm{1}}{\mathrm{8}}\mathrm{cos14}\theta−\frac{\mathrm{1}}{\mathrm{8}}\mathrm{cos2}\theta \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}}\mathrm{cos2}\theta+\frac{\mathrm{1}}{\mathrm{8}}−\frac{\mathrm{1}}{\mathrm{8}}\mathrm{cos2}\theta+\frac{\mathrm{1}}{\mathrm{8}}\mathrm{cos}\theta−\frac{\mathrm{1}}{\mathrm{16}}+\frac{\mathrm{1}}{\mathrm{8}}\mathrm{cos4}\theta−\frac{\mathrm{1}}{\mathrm{8}}\mathrm{cos2}\theta \\ $$$$=\frac{\mathrm{1}}{\mathrm{16}}−\frac{\mathrm{1}}{\mathrm{8}}\mathrm{cos2}\theta+\frac{\mathrm{1}}{\mathrm{8}}\mathrm{cos4}\theta+\frac{\mathrm{1}}{\mathrm{8}}\mathrm{cos}\theta \\ $$$$=\frac{\mathrm{1}}{\mathrm{16}}−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{sin3}\theta\mathrm{cos}\theta+\frac{\mathrm{1}}{\mathrm{8}}\mathrm{cos}\theta \\ $$$$=\frac{\mathrm{1}}{\mathrm{16}}−\frac{\mathrm{1}}{\mathrm{8}}\mathrm{cos}\theta+\frac{\mathrm{1}}{\mathrm{8}}\mathrm{cos}\theta=\frac{\mathrm{1}}{\mathrm{16}} \\ $$

Answered by TANMAY PANACEA last updated on 02/Oct/20

p=((sin10)/2)sin(60−10)sin(60+10)  =((sin10)/2)(((√3)/2)cos10−(1/2)sin10)(((√3)/2)cos10+((sin10)/2))  sin10=a  p=(a/2){(3/4)(1−a^2 )−(a^2 /4)}=((3a−4a^3 )/8)=((sin(3×10))/8)=(1/(16))  sin3θ=3sinθ−4sin^3 θ

$${p}=\frac{{sin}\mathrm{10}}{\mathrm{2}}{sin}\left(\mathrm{60}−\mathrm{10}\right){sin}\left(\mathrm{60}+\mathrm{10}\right) \\ $$$$=\frac{{sin}\mathrm{10}}{\mathrm{2}}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{cos}\mathrm{10}−\frac{\mathrm{1}}{\mathrm{2}}{sin}\mathrm{10}\right)\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{cos}\mathrm{10}+\frac{{sin}\mathrm{10}}{\mathrm{2}}\right) \\ $$$${sin}\mathrm{10}={a} \\ $$$${p}=\frac{{a}}{\mathrm{2}}\left\{\frac{\mathrm{3}}{\mathrm{4}}\left(\mathrm{1}−{a}^{\mathrm{2}} \right)−\frac{{a}^{\mathrm{2}} }{\mathrm{4}}\right\}=\frac{\mathrm{3}{a}−\mathrm{4}{a}^{\mathrm{3}} }{\mathrm{8}}=\frac{{sin}\left(\mathrm{3}×\mathrm{10}\right)}{\mathrm{8}}=\frac{\mathrm{1}}{\mathrm{16}} \\ $$$${sin}\mathrm{3}\theta=\mathrm{3}{sin}\theta−\mathrm{4}{sin}^{\mathrm{3}} \theta \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com