Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 769 by rishabh last updated on 09/Mar/15

Prove that product of any  n consecutive integers  is divisiblr by n!

$${Prove}\:{that}\:{product}\:{of}\:{any}\:\:{n}\:{consecutive}\:{integers} \\ $$$${is}\:{divisiblr}\:{by}\:{n}! \\ $$

Commented by 123456 last updated on 09/Mar/15

n(n+1)∙∙∙(2n−1)

$${n}\left({n}+\mathrm{1}\right)\centerdot\centerdot\centerdot\left(\mathrm{2}{n}−\mathrm{1}\right) \\ $$

Answered by prakash jain last updated on 09/Mar/15

n consecutive number ending with p are (P)  P=p(p−1)...(p−n+1)  (P/(n!)) = ((p(p−1)...(p−n+1))/(n!))  =(([p(p−1)...(p−n+1)][(p−n)(p−n−1)...1])/(n!))  =((p!)/(n!(p−n)!))=^p C_n    ^p C_n  is always an integer so P is divisible by n!.

$${n}\:\mathrm{consecutive}\:\mathrm{number}\:\mathrm{ending}\:\mathrm{with}\:{p}\:\mathrm{are}\:\left({P}\right) \\ $$$${P}={p}\left({p}−\mathrm{1}\right)...\left({p}−{n}+\mathrm{1}\right) \\ $$$$\frac{{P}}{{n}!}\:=\:\frac{{p}\left({p}−\mathrm{1}\right)...\left({p}−{n}+\mathrm{1}\right)}{{n}!} \\ $$$$=\frac{\left[{p}\left({p}−\mathrm{1}\right)...\left({p}−{n}+\mathrm{1}\right)\right]\left[\left({p}−{n}\right)\left({p}−{n}−\mathrm{1}\right)...\mathrm{1}\right]}{{n}!} \\ $$$$=\frac{{p}!}{{n}!\left({p}−{n}\right)!}=\:^{{p}} {C}_{\mathrm{n}} \: \\ $$$$\:^{{p}} {C}_{{n}} \:\mathrm{is}\:\mathrm{always}\:\mathrm{an}\:\mathrm{integer}\:\mathrm{so}\:{P}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:{n}!. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com