Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 7621 by 314159 last updated on 06/Sep/16

Prove that   π=4Σ_(k=0) ^∞   (((−1)^k )/(2k+1))

$${Prove}\:{that}\: \\ $$$$\pi=\mathrm{4}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}+\mathrm{1}} \\ $$

Answered by prakash jain last updated on 26/Sep/16

Outline for the proof:  x<1  (1/(1+x^2 ))=1−x^2 +x^4 −x^6 +x^8 −+..  Integrate from 0 to 1.  ∫_0 ^1 (1/(1+x^2 ))=∫_0 ^1 1−x^2 +x^4 −x^6   [tan^(−1) x]_0 ^1 =[x−(x^3 /3)+(x^5 /5)−(x^7 /7)+−..]_0 ^1   (π/4)=1−(1/3)+(1/5)−(1/7)+−...  (π/4)=Σ_(k=0) ^∞  (((−1)^k )/(2k+1))

$$\mathrm{Outline}\:\mathrm{for}\:\mathrm{the}\:\mathrm{proof}: \\ $$$${x}<\mathrm{1} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }=\mathrm{1}−{x}^{\mathrm{2}} +{x}^{\mathrm{4}} −{x}^{\mathrm{6}} +{x}^{\mathrm{8}} −+.. \\ $$$$\mathrm{Integrate}\:\mathrm{from}\:\mathrm{0}\:\mathrm{to}\:\mathrm{1}. \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{1}−{x}^{\mathrm{2}} +{x}^{\mathrm{4}} −{x}^{\mathrm{6}} \\ $$$$\left[\mathrm{tan}^{−\mathrm{1}} {x}\right]_{\mathrm{0}} ^{\mathrm{1}} =\left[{x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}}+\frac{{x}^{\mathrm{5}} }{\mathrm{5}}−\frac{{x}^{\mathrm{7}} }{\mathrm{7}}+−..\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\frac{\pi}{\mathrm{4}}=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{7}}+−... \\ $$$$\frac{\pi}{\mathrm{4}}=\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}+\mathrm{1}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com