Question and Answers Forum

All Questions      Topic List

Set Theory Questions

Previous in All Question      Next in All Question      

Previous in Set Theory      Next in Set Theory      

Question Number 194868 by Erico last updated on 17/Jul/23

Prove that ∀n∈IN  ∫^( 1) _( 0) t sin^(2n) (lnt)dt= (1/(1−e^(−2π) )) ∫^( π) _( 0) e^(−2t) sin^(2n) (t)dt

$$\mathrm{Prove}\:\mathrm{that}\:\forall{n}\in\mathrm{IN} \\ $$$$\underset{\:\mathrm{0}} {\int}^{\:\mathrm{1}} {t}\:{sin}^{\mathrm{2}{n}} \left({lnt}\right){dt}=\:\frac{\mathrm{1}}{\mathrm{1}−{e}^{−\mathrm{2}\pi} }\:\underset{\:\mathrm{0}} {\int}^{\:\pi} {e}^{−\mathrm{2}{t}} {sin}^{\mathrm{2}{n}} \left({t}\right){dt} \\ $$

Answered by witcher3 last updated on 17/Jul/23

ln(t)=−x  ⇒∫_0 ^∞ e^(−2x) sin^(2n) (x)dx  =Σ_(k≥0) ∫_(kπ) ^((k+1)π) e^(−2x) sin^(2n) (x)dx  x→kπ+t  =Σ_(k≥0) ∫_0 ^π e^(−2kπ−2t) sin^(2n) (kπ+t)dt  =Σ_(k≥0) e^(−2kπ) ∫_0 ^π e^(−2t) sin^(2n) (t)dt  =∫_0 ^π e^(−2t) sin^(2n) (t)dt.Σ_(k≥0) e^(−2kπ)   =(1/(1−e^(−2π) ))∫_0 ^π e^(−2t) sin^(2n) (t)dt

$$\mathrm{ln}\left(\mathrm{t}\right)=−\mathrm{x} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{2x}} \mathrm{sin}^{\mathrm{2n}} \left(\mathrm{x}\right)\mathrm{dx} \\ $$$$=\underset{\mathrm{k}\geqslant\mathrm{0}} {\sum}\int_{\mathrm{k}\pi} ^{\left(\mathrm{k}+\mathrm{1}\right)\pi} \mathrm{e}^{−\mathrm{2x}} \mathrm{sin}^{\mathrm{2n}} \left(\mathrm{x}\right)\mathrm{dx} \\ $$$$\mathrm{x}\rightarrow\mathrm{k}\pi+\mathrm{t} \\ $$$$=\underset{\mathrm{k}\geqslant\mathrm{0}} {\sum}\int_{\mathrm{0}} ^{\pi} \mathrm{e}^{−\mathrm{2k}\pi−\mathrm{2t}} \mathrm{sin}^{\mathrm{2n}} \left(\mathrm{k}\pi+\mathrm{t}\right)\mathrm{dt} \\ $$$$=\underset{\mathrm{k}\geqslant\mathrm{0}} {\sum}\mathrm{e}^{−\mathrm{2k}\pi} \int_{\mathrm{0}} ^{\pi} \mathrm{e}^{−\mathrm{2t}} \mathrm{sin}^{\mathrm{2n}} \left(\mathrm{t}\right)\mathrm{dt} \\ $$$$=\int_{\mathrm{0}} ^{\pi} \mathrm{e}^{−\mathrm{2t}} \mathrm{sin}^{\mathrm{2n}} \left(\mathrm{t}\right)\mathrm{dt}.\underset{\mathrm{k}\geqslant\mathrm{0}} {\sum}\mathrm{e}^{−\mathrm{2k}\pi} \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}−\mathrm{e}^{−\mathrm{2}\pi} }\int_{\mathrm{0}} ^{\pi} \mathrm{e}^{−\mathrm{2t}} \mathrm{sin}^{\mathrm{2n}} \left(\mathrm{t}\right)\mathrm{dt} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com