Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 195708 by mokys last updated on 08/Aug/23

Prove that : log_(((√a) − b)) ((√a) +b) = −1

$$\boldsymbol{{Prove}}\:\boldsymbol{{that}}\::\:\boldsymbol{{log}}_{\left(\sqrt{\boldsymbol{{a}}}\:−\:\boldsymbol{{b}}\right)} \left(\sqrt{\boldsymbol{{a}}}\:+\boldsymbol{{b}}\right)\:=\:−\mathrm{1} \\ $$

Answered by JDamian last updated on 08/Aug/23

b=0 ⇒ log_(√a) ((√a))= 1 ≠ −1

$${b}=\mathrm{0}\:\Rightarrow\:\mathrm{log}_{\sqrt{{a}}} \left(\sqrt{{a}}\right)=\:\mathrm{1}\:\neq\:−\mathrm{1} \\ $$

Answered by Frix last updated on 08/Aug/23

((ln ((√a)+b))/(ln ((√a)−b)))=−1  Defined for a≥0∧(√a)>b∧a≠(b+1)^2   True only if a=b^2 +1

$$\frac{\mathrm{ln}\:\left(\sqrt{{a}}+{b}\right)}{\mathrm{ln}\:\left(\sqrt{{a}}−{b}\right)}=−\mathrm{1} \\ $$$$\mathrm{Defined}\:\mathrm{for}\:{a}\geqslant\mathrm{0}\wedge\sqrt{{a}}>{b}\wedge{a}\neq\left({b}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\mathrm{True}\:\mathrm{only}\:\mathrm{if}\:{a}={b}^{\mathrm{2}} +\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com