Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 62380 by ajfour last updated on 20/Jun/19

Prove that if the lengths of a   triangle form an arithmetic  progression, then the centre of  incircle and the centroid of  triangle lie on a line parallel to  the side of middle length of the  triangle.

$${Prove}\:{that}\:{if}\:{the}\:{lengths}\:{of}\:{a}\: \\ $$$${triangle}\:{form}\:{an}\:{arithmetic} \\ $$$${progression},\:{then}\:{the}\:{centre}\:{of} \\ $$$${incircle}\:{and}\:{the}\:{centroid}\:{of} \\ $$$${triangle}\:{lie}\:{on}\:{a}\:{line}\:{parallel}\:{to} \\ $$$${the}\:{side}\:{of}\:{middle}\:{length}\:{of}\:{the} \\ $$$${triangle}. \\ $$

Answered by mr W last updated on 20/Jun/19

let the middle side length be a,  then the other two sides are  a−d and a+d.  the perimeter of the triangle is  p=a+(a−d)+(a+d)=3a.  let Δ be the area of the triangle,  the radius of the incircle is r,  (1/2)pr=Δ  ⇒r=((2Δ)/p)=((2Δ)/(3a))  let h=altitude over middle side  (1/2)ah=Δ  ⇒h=((2Δ)/a)  the distance of the centroid to the  middle side is (h/3)=((2Δ)/(3a)), which is  equal to the radius of incircle. that  means the center of incircle and the  centroid have the same distance to  the middle side, i.e. they lie on a  line parallel to the middle side.

$${let}\:{the}\:{middle}\:{side}\:{length}\:{be}\:{a}, \\ $$$${then}\:{the}\:{other}\:{two}\:{sides}\:{are} \\ $$$${a}−{d}\:{and}\:{a}+{d}. \\ $$$${the}\:{perimeter}\:{of}\:{the}\:{triangle}\:{is} \\ $$$${p}={a}+\left({a}−{d}\right)+\left({a}+{d}\right)=\mathrm{3}{a}. \\ $$$${let}\:\Delta\:{be}\:{the}\:{area}\:{of}\:{the}\:{triangle}, \\ $$$${the}\:{radius}\:{of}\:{the}\:{incircle}\:{is}\:{r}, \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{pr}=\Delta \\ $$$$\Rightarrow{r}=\frac{\mathrm{2}\Delta}{{p}}=\frac{\mathrm{2}\Delta}{\mathrm{3}{a}} \\ $$$${let}\:{h}={altitude}\:{over}\:{middle}\:{side} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{ah}=\Delta \\ $$$$\Rightarrow{h}=\frac{\mathrm{2}\Delta}{{a}} \\ $$$${the}\:{distance}\:{of}\:{the}\:{centroid}\:{to}\:{the} \\ $$$${middle}\:{side}\:{is}\:\frac{{h}}{\mathrm{3}}=\frac{\mathrm{2}\Delta}{\mathrm{3}{a}},\:{which}\:{is} \\ $$$${equal}\:{to}\:{the}\:{radius}\:{of}\:{incircle}.\:{that} \\ $$$${means}\:{the}\:{center}\:{of}\:{incircle}\:{and}\:{the} \\ $$$${centroid}\:{have}\:{the}\:{same}\:{distance}\:{to} \\ $$$${the}\:{middle}\:{side},\:{i}.{e}.\:{they}\:{lie}\:{on}\:{a} \\ $$$${line}\:{parallel}\:{to}\:{the}\:{middle}\:{side}. \\ $$

Commented by ajfour last updated on 20/Jun/19

Thank you Sir, very good approach!

$${Thank}\:{you}\:{Sir},\:{very}\:{good}\:{approach}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com