Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 2751 by prakash jain last updated on 26/Nov/15

Prove that  Σ_(i=1) ^∞ ((sin i)/i)=(π/2)−(1/2)

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{sin}\:{i}}{{i}}=\frac{\pi}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Answered by prakash jain last updated on 27/Nov/15

See question 2735 fo convergence proof.  Question used i as index using n as index   as i=(√(−1)) is used in answer.  Σ_(n=1) ^∞ ((sin n)/n)  =ℑ[Σ_(n=1) ^∞ (e^(in) /n)]=ℑ(ln (1−e^i ))=arg(1−e^i )=((π−1)/2)

$$\mathrm{See}\:\mathrm{question}\:\mathrm{2735}\:\mathrm{fo}\:\mathrm{convergence}\:\mathrm{proof}. \\ $$$$\mathrm{Question}\:\mathrm{used}\:{i}\:{as}\:{index}\:{using}\:{n}\:{as}\:{index}\: \\ $$$${as}\:{i}=\sqrt{−\mathrm{1}}\:{is}\:{used}\:{in}\:{answer}. \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{sin}\:{n}}{{n}} \\ $$$$=\Im\left[\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{e}^{{in}} }{{n}}\right]=\Im\left(\mathrm{ln}\:\left(\mathrm{1}−{e}^{{i}} \right)\right)=\mathrm{arg}\left(\mathrm{1}−{e}^{{i}} \right)=\frac{\pi−\mathrm{1}}{\mathrm{2}} \\ $$

Commented by prakash jain last updated on 27/Nov/15

Σ_(n=1) ^∞ ((sin nx)/n)=((π−x)/2)

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{sin}\:{nx}}{{n}}=\frac{\pi−{x}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com