Question and Answers Forum

All Questions      Topic List

Vector Calculus Questions

Previous in All Question      Next in All Question      

Previous in Vector Calculus      

Question Number 196412 by Erico last updated on 24/Aug/23

Prove that ∫^( i) _( 0) (cos(2t)+isin(2t))e^(−t^2 ) dt= (i/(2e))∫^( 2) _( 0) e^(t^2 /4) dt

$$\mathrm{Prove}\:\mathrm{that}\:\underset{\:\mathrm{0}} {\int}^{\:{i}} \left({cos}\left(\mathrm{2}{t}\right)+{isin}\left(\mathrm{2}{t}\right)\right){e}^{−{t}^{\mathrm{2}} } {dt}=\:\frac{{i}}{\mathrm{2}{e}}\underset{\:\mathrm{0}} {\int}^{\:\mathrm{2}} \mathrm{e}^{\frac{\mathrm{t}^{\mathrm{2}} }{\mathrm{4}}} \mathrm{dt} \\ $$

Commented by JDamian last updated on 24/Aug/23

is t real or complex?

$${is}\:\boldsymbol{\mathrm{t}}\:{real}\:{or}\:{complex}? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com